@ RADEON R(Z;N AMDA\

FIDELITY FX = SPD

LOU KRAMER, AMD

AMDZ1

GPUOpen

FIDELITY FX
SINGLE PASS DOWNSAMPLER (SPD)

GPUOpen's FidelityFX Single Pass Downsampler (SPD) library provides a single pass compute
shader RDNA-optimized solution to generate up to 12 MIP levels of a given texture per slice

MOTIVATION

A common approach to generate the mipmap levels is s . e
using a pixel shader, one pass per mip : " 2 3

Limitations and bottlenecks of a pixel shader approach:
Barriers between the MIPs

Few working threads for about ~1/6th of the whole
downsampling pass

Data exchange between the MIPs via
global memory

AMDZ

GPUOpen

MOTIVATION

SPD uses only a single pass compute shader
for all MIPs

Advantages:

No intermediate barriers
Few working threads for only ~2% of the pass

Data exchange between the MIPs via groupshared
memory and wave operations except for MIP 6

Can overlap work with other dispatches/draw
calls due to no barriers between the mip generation

SPD_CS
Hga
=

AMDZ

GPUOpen

CONCEPT OF SPD

CONCEPT

Basic concept of SPD:

Thread group of 256 threads downsamples a tile of 64x64 down to 1x1
- Each thread group works independently from the other thread groups

Last active thread group computes the remaining MIPs

- One synchronization point between all thread groups is required
- Can downsample a texture of size 4096x4096 to 1x1 (12 MIPs)

CONCEPT

CONCEPT

Each thread group works on a Only last active thread group
64x64 tile computes MIP 7 to 12

CONCEPT

Global synchronization point
across all thread groups

Each thread group works on a
64x64 tile

Only last active thread group
computes MIP 7 to 12

Global synchronization point

CO N C E PT across all thread groups

~
~
~
~
~
~

HEEEEEEEN
........ MIP 0 1 6 7 ..
........ Each thread group works on a Only last active thread group
.-...... 64x64 tile computes MIP 7 to 12
HEEEEENEE

whole mipmap

Takes only ~2% of
computation

CONCEPT

For cube and array textures, the same concept is applied to each slice.

SPD 2.0 adds a new parameter with the slice index. The z component of the dispatch size is based
on the total number of slices.

With this change, SPD computes all MIPs for all slices within a single dispatch call.

CONCEPT

SPD 2.0 added the support to update a sub-rectangle, if only a known region has been modified.

B 642 patch with modified data

642 patch with unmodified data

Source texture: 512x512

Default approach: invoke 64 thread groups

Last active thread group computes last 4 MIPs (8x8 -> 4x4
-> 2x2 -> 1x1)

With the sub-rectangle feature: invoke 12 thread groups
covering a sub-rectangle with all patches that have
modified data

Last active thread group still computes last 4 MIPs

AMDZ

GPUOpen

CONCEPT

SPD 2.0 added the support to update a sub-rectangle, if only a known region has been modified.

B 642 patch with modified data

642 patch with unmodified data

In this example, 20 thread groups are invoked as SPD
only supports one single sub-rectangle, not multiple

AMDZ

GPUOpen

IMPLEMENTATION

IMPLEMENTATION

Conceptual implementation:

Offset for tile from MIP 0: dispatchID.xy * 64;
Offset for tile from MIP 1: dispatchID.xy * 32;
Offset for tile from MIP 2: dispatchID.xy * 16;

GenerateMIP1 () ;
GenerateMIP2 () ;
GenerateMIP3 () ;
GenerateMIP4 () ;

GenerateMIP5 () ;

GenerateMIPo () ;

IncreaseAtomicCounter () ;

If (atomicCounter == numberOfThreadGroups)

{
// Repeat above with offset O

AMDZ

GPUOpen

IMPLEMENTATION

Conceptual implementation: Thread group size is <256,1,1>
GenerateMIP1 () ; MIP O to MIP 1:
GenerateMIP2 () ; Each thread loads 16 values from the source texture
GenerateMIP3 () ; Each thread computes 4 values for MIP 1

MIP 1 to MIP 2:
GenerateMIP4 () ;

Each thread loads 4 values from groupshared

GenerateMIP5 () ; memaory or uses wave operations
GenerateMIP6 () ; Each thread computes 1 value for MIP 2
IncreaseAtomicCounter () ; MIP 2 to MIP 3:

If (atomicCounter == numberOfThreadGroups) Only every 4th thread is needed at this point
{ MIP 3 to MIP 4:

// Repeat above with offset 0 Only every 16th thread is needed at this point

AMDZ

GPUOpen

IMPLEMENTATION

Conceptual implementation:

MIP O to MIP 1:
GenerateMIPL(); Each thread loads 16 values from the source
GenerateMIP2 () ; texture

GenerateMIP3 () ;
GenerateMIP4 () ; .) i . :
This is very time consuming, especially for high

GenerateMIP5 () ; resolution source textures

GenerateMIPo () ;

Load pattern of source texture is critical
IncreaseAtomicCounter () ;

If (atomicCounter == numberOfThreadGroups)

{
// Repeat above with offset O

AMDZ

GPUOpen

TEXTURE ACCESS O(1 |8 (|9 |16|17(24|25|64|65|72|73|[80|81|88]|89

Use morton ordering to rearrange the 00 % 20 | Ao | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 100 | 150
/ /
o, . _ A
thread indices in a 2x2 swizzle or | A | 0 | o | sn | an [na | s | oa | o [aaa | s2n | asa | e | s
/ l /
o L1
M t h th t d dt t | t 0.2 22 <42 4.2 5.2 6,2 7,2 8,2 9,2 10,2 | 11,2 | 12,2 | 132 | 14,2 | 1572
atches the standard texture layou J
: : : : _ V4 §
Ne'ghborlng pIXG|S are Iald out In 03 | 13 | 23 | 33 | 43 | 53 | 63 | 73 | 83 | 93 | 103 | 11,3 | 123 | 133 | 143 | 153

memory close by

0,4 14 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 10,4 11,4 12,4 13,4 14,4 15,4

x = (((1Index >> 2) & 0x0007) & OxFFFE) | index & 0x0001
y = ((index >> 1) & 0x0003) | (((index >> 3) & 0x0007) & OxFFFC

AMDZ

GPUOpen

TEXTURE ACCESS

Texel index (0,0), (1,0), (0,1), (1,1) loaded by thread with index O
Texel index (2,0), (3,0), (2,1), (3,1) loaded by thread with index 1

00 |10 |20 |30 |40 |50 320 | 330 | 340 | 350 | 36,0 | 37,0
O (0 |1 (1 |8 |8 O (0 |1 (1 |8 |8
O (0 |1 (1 |8 |8 O (0 |1 (1 |8 |8
2 |2 |3 (3 |10(10 2 |2 |3 |3 |10(10
2 |2 |3 (3 |10(10 2 |2 |3 |3 |10(10

AMDZ

GPUOpen

IMPLEMENTATION

For exchanging the data between the MIPs groupshared memory and optionally wave operations are
used.

If wave operations are used
Reduced VGPRs

For bits per pixel (bpp) <= 16, we can also use FP16
Reduced VGPRs
Reduced groupshared memory

Less number of VGPRs and groupshared memory can be especially beneficially for overlapping FFX
SPD with other work in parallel or when used on the async compute queue

Potentially less work in flight limited

INTEGRATION

INTEGRATION - CPU

Provide as constants:
number of MIP levels to be computed per slice (maximum is 12)
number of total thread groups: ((widthInPixels+63)>>6) * ((heightInPixels+63)>>6) * (numberOfSlices)
[optional] offset of thread groups, in case only a sub-rectangle of the source texture has modified data
Use the SpdSetup function to compute the correct thread group offsets and the corresponding number of total thread groups per slice

Bind the resources ©
—> source texture + optionally sampler
—> output MIPs (can be same resource as source texture or different resource)

Initialize your global atomic counter to O — this only needs to be done once for the first run of SPD. SPD will reset the counter after each run.

Dispatch the shader
vkCmdDispatch (cmdBuf, (widthInPixels+63)>>6, (heightInPixels+63)>>6, numberOfSlices);

AMDZ

GPUOpen

INTEGRATION - GPU

Resources:
Source image
Destination images [# of output MIPS]
Global atomic counter - a single unsigned integer, read & write access, per slice
Constants
[optional] Sampler

If the 2x2 -> 1 reduction function is computing the average

- sample from the source image using a bilinear filter

INTEGRATION - GPU

Setup pre-portability-header defines (sets up GLSL/HLSL path, etc.)
#define A GPU 1

#define A HLSL 1 /lor/l# define A GLSL 1
—> All following code samples use HLSL

for PACKED version
#define A HALF

Include the portability header
#include "ffx a.h"

INTEGRATION - GPU

Define groupshared memory variables
groupshared AUl spd counter; -> store current global atomic counter for all threads within the thread group

groupshared AF4 spd intermediate[16][16]; -> intermediate data storage for inter-mip exchange
PACKED version
groupshared AH4 spd intermediate[l6][16];

Separating the channels is also possible — we recommend trying out both and measuring performance © it can vary from format and number of channels
groupshared AFl spd intermediateR[16][16];

groupshared AFl spd intermediateG[1l6][16];

groupshared AFl spd intermediateB[16] [16];

groupshared AF1l spd intermediateA[l6][16];

or for PACKED version:

groupshared AH2 spd intermediateRG[16][16];

groupshared AHZ spd intermediateBA[l6][16];

D EME?JOpen

INTEGRATION - GPU

Define SPD interface functions
Use the slice parameter if downsampling a cube or array texture as 3rd component of the index

AF4 SpdLoadSourcelImage (ASUZ2 p, AUl slice){ return imgSrc[p]; }
AF4 SpdLoad (ASU2 p, AUl slice){ return imgDst[5][p]; } //load from output MIP 5
volid SpdStore (ASUZ2 p, AF4 value, AUl mip, AUl slice){ imgDst[mip] [p] = value; }

If you use sRGB or UNORM, you need to transform your values to linear color space and back. For an approximation you
can use:

AF4 SpdLoadSourcelImage (ASU2 p, AUl slice){ return imgSrc[p] * imgSrc(p]l,5 }
AF4 SpdLoad (ASUZ2 p, AUl slice){ return imgDst[5] [p] * imgDst[5] [p]; !
void SpdStore (ASU2 p, AF4 value, AUl mip, AUl slice) {imgDst[mip] [p] = sqgrt(value);}

Add boundary checks if texture resolution is not a power of 2

AMDZ

GPUOpen

LOAD FROM SOURCE IMAGE

Standard, default solution:
AF4 SpdLoadSourceImage (ASUZ2 p, AUl slice) {return imgSrc[p];}

If your reduction function is just computing the average, we recommend you use a bilinear sampler:
AF4 SpdLoadSourceImage (ASUZ2 p, AUl slice) {

//invinputSize is additionally passed as constant

AF2 textureCoord = p * invInputSize + 1InvInputSize;

return imgSrc.Samplelevel (srcSampler, textureCoord, 0); 1}

If you downsample a cube texture or an array texture, use the slice parameter as 3rd index
component.

AMDZ

GPUOpen

INTEGRATION - GPU

Define SPD interface functions

vold SpdIncreaseAtomicCounter (AUl slice) {
InterlockedAdd (globalAtomic[0] .counter[slice], 1, spd counter); }

AUl SpdGetAtomicCounter () { return spd counter; }
Void SpdResetAtomicCounter (AUl slice)

{

globalAtomic[0] .counter[slice] = 0;

AF4 SpdLoadIntermediate (AUl x, AUl y){ ..}
volid SpdStorelIntermediate (AUl x, AUl vy, AF4 value){ .. }

AMDZ

GPUOpen

LOAD AND STORE TO LDS

AF4 SpdLoadIntermediate (AUl x, AUl y){ return spd intermediate[x][y]; }

vold SpdStoreIntermediate (AUl x, AUl y, AF4 value) {
spd intermediate[x] [y] = value; |}

You need to adapt above functions to your groupshared memory setup, e.g. if you only have one
channel use:

groupshared AFl spd intermediate[l6][1l6];
AF4 SpdLoadIntermediate (AUl x, AUl y){

return AF4 x(spd intermediate([x][y].x); }
vold SpdStoreIntermediate (AUl x, AUl vy, AF4 wvalue) {

spd i1ntermediate([x][y] = value.x; }

AMDZ

GPUOpen

CUSTOM REDUCTION FUNCTION

Define your reduction function. Input are the 2x2 quad values, output is one single value.
For example you can compute the average of all 4 values:

AF4 SpdReduced4 (AF4 v0, AF4 v1, AF4 v2, AF4 v3) |

return (vO+vl+v2+v3)*0.25; }

INTEGRATION - GPU - PACKED

If you use the packed version of FFX SPD, every function has the suffix H and uses the packed
types:

AH4 SpdLoadSourcelImageH (ASUZ2 p, AUl slice){ .. }
AH4 SpdLoadH (ASUZ2 p, AUl slice) {return AH4 (imgDst[5] [p]) ;}

vold SpdStoreH (ASU2Z2 p, AH4 value, AUl mip, AUl slice) {imgDst[mip] [p] =
AF4 (value) ; }

INTEGRATION - GPU

Setup FFX SPD defines

If you only use the PACKED version of FFX SPD
#define SPD PACKED ONLY

If you use a bilinear sampler to load the source texture (recommended!)
#define SPD LINEAR SAMPLER

If subgroup operations are not supported / if you can‘t use SM6
#define SPD NO WAVE OPERATIONS

Include the FFX SPD header file
#include "ffx spd.h"

AMDZ

GPUOpen

INTEGRATION - GPU

Call the FFX SPD function:

[numthreads (256, 1,1)]

void main(uint3 WorkGroupId : SV GroupID, uint LocalThreadIndex : SV _GroupIndex) {

SpdDownsample (AU2 (WorkGroupId.xy), AUl (LocalThreadIndex),
AUl (mips), AUl (numWorkGroups), AUl (WorkGroupId.z),
AU2 (workGroupOffset) // optionally
) ;

/I PACKED

SpdDownsampleH (AU2 (WorkGroupId.xy), AUl (LocalThreadIndex),
AUl (mips), AUl (numWorkGroups), AUl (WorkgroupId.z)
AU2 (workGroupOffset) // optionally
) 7

D EMIg?JOpen

AMDZD1

GPUOpen

AMD ¢t

GPUOpen

DISCLAIMER & ATTRIBUTION

DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and
typographical errors. The information contained herein is sul(ajject to change and may be rendered inaccurate for many reasons, including but
not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks
of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or
revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof
without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS I1S.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR
IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT,
INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN,
EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2020 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Radeon™ and combinations thereof are trademarks of Advanced
Micro Devices, Inc. in the United States and/or other jurisdictions. Vulkan® is a registered trademark of the Khronos Group Inc. DirectX is a registered
trademark of Microsoft Corporation. Other names are for informational purposes only and may be trademarks of their respective owners.

AMDZ

GPUOpen

