
LOU KRAMER, AMD

FIDELITY FX – SPD

2

FIDELITY FX
SINGLE PASS DOWNSAMPLER (SPD)

GPUOpen's FidelityFX Single Pass Downsampler (SPD) library provides a single pass compute
shader RDNA-optimized solution to generate up to 12 MIP levels of a given texture per slice

3

MOTIVATION

A common approach to generate the mipmap levels is
using a pixel shader, one pass per mip

Limitations and bottlenecks of a pixel shader approach:

• Barriers between the MIPs

• Few working threads for about ~1/6th of the whole
downsampling pass

• Data exchange between the MIPs via
global memory

4

MOTIVATION

SPD uses only a single pass compute shader
for all MIPs

Advantages:

• No intermediate barriers

• Few working threads for only ~2% of the pass

• Data exchange between the MIPs via groupshared
memory and wave operations except for MIP 6

• Can overlap work with other dispatches/draw
calls due to no barriers between the mip generation

5

CONCEPT OF SPD

6

CONCEPT

Basic concept of SPD:

• Thread group of 256 threads downsamples a tile of 64x64 down to 1x1

→ Each thread group works independently from the other thread groups

• Last active thread group computes the remaining MIPs

→ One synchronization point between all thread groups is required

→ Can downsample a texture of size 4096x4096 to 1x1 (12 MIPs)

7

CONCEPT

MIP 0 1 … 6 7 …

8

CONCEPT

MIP 0 1 … 6 7 …

Each thread group works on a

64x64 tile

Only last active thread group

computes MIP 7 to 12

9

CONCEPT

MIP 0 1 … 6 7 …

Each thread group works on a

64x64 tile

Only last active thread group

computes MIP 7 to 12

Global synchronization point

across all thread groups

10

CONCEPT

MIP 0 1 … 6 7 …

Each thread group works on a

64x64 tile

Only last active thread group

computes MIP 7 to 12

Takes only ~2% of

whole mipmap

computation

Global synchronization point

across all thread groups

11

CONCEPT

For cube and array textures, the same concept is applied to each slice.

SPD 2.0 adds a new parameter with the slice index. The z component of the dispatch size is based
on the total number of slices.

With this change, SPD computes all MIPs for all slices within a single dispatch call.

12

CONCEPT

SPD 2.0 added the support to update a sub-rectangle, if only a known region has been modified.

Source texture: 512x512

Default approach: invoke 64 thread groups

Last active thread group computes last 4 MIPs (8x8 -> 4x4

-> 2x2 -> 1x1)

With the sub-rectangle feature: invoke 12 thread groups

covering a sub-rectangle with all patches that have

modified data

Last active thread group still computes last 4 MIPs

64² patch with modified data

64² patch with unmodified data

13

CONCEPT

SPD 2.0 added the support to update a sub-rectangle, if only a known region has been modified.

In this example, 20 thread groups are invoked as SPD

only supports one single sub-rectangle, not multiple

64² patch with modified data

64² patch with unmodified data

14

IMPLEMENTATION

15

IMPLEMENTATION

GenerateMIP1();

GenerateMIP2();

GenerateMIP3();

GenerateMIP4();

GenerateMIP5();

GenerateMIP6();

IncreaseAtomicCounter();

If (atomicCounter == numberOfThreadGroups)

{

// Repeat above with offset 0

}

Offset for tile from MIP 0: dispatchID.xy * 64;

Offset for tile from MIP 1: dispatchID.xy * 32;

Offset for tile from MIP 2: dispatchID.xy * 16;

…

Conceptual implementation:

16

IMPLEMENTATION

GenerateMIP1();

GenerateMIP2();

GenerateMIP3();

GenerateMIP4();

GenerateMIP5();

GenerateMIP6();

IncreaseAtomicCounter();

If (atomicCounter == numberOfThreadGroups)

{

// Repeat above with offset 0

}

Thread group size is <256,1,1>

MIP 0 to MIP 1:

→ Each thread loads 16 values from the source texture

→ Each thread computes 4 values for MIP 1

MIP 1 to MIP 2:

→ Each thread loads 4 values from groupshared
memory or uses wave operations

→ Each thread computes 1 value for MIP 2

MIP 2 to MIP 3:

→ Only every 4th thread is needed at this point

MIP 3 to MIP 4:

→ Only every 16th thread is needed at this point

…

Conceptual implementation:

17

IMPLEMENTATION

MIP 0 to MIP 1:

→ Each thread loads 16 values from the source
texture

This is very time consuming, especially for high
resolution source textures

Load pattern of source texture is critical

GenerateMIP1();

GenerateMIP2();

GenerateMIP3();

GenerateMIP4();

GenerateMIP5();

GenerateMIP6();

IncreaseAtomicCounter();

If (atomicCounter == numberOfThreadGroups)

{

// Repeat above with offset 0

}

Conceptual implementation:

18

TEXTURE ACCESS

Use morton ordering to rearrange the

thread indices in a 2x2 swizzle

→ Matches the standard texture layout

→ Neighboring pixels are laid out in
memory close by

x = (((index >> 2) & 0x0007) & 0xFFFE) | index & 0x0001

y = ((index >> 1) & 0x0003) | (((index >> 3) & 0x0007) & 0xFFFC

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1 11,1 12,1 13,1 14,1 15.1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2 11,2 12,2 13,2 14,2 15,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3 11,3 12,3 13,3 14,3 15,3

0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 10,4 11,4 12,4 13,4 14,4 15,4

0 1 8 9 16 17 24 25 64 65 72 73 80 81 88 89

2 3 10 11 18 19 26 27 66 67 74 75 82 83 90 91

19

TEXTURE ACCESS

0 0 1 1 8 8

0 0 1 1 8 8

2 2 3 3 10 10

2 2 3 3 10 10

…

0 0 1 1 8 8

0 0 1 1 8 8

2 2 3 3 10 10

2 2 3 3 10 10

Texel index (0,0), (1,0), (0,1), (1,1) loaded by thread with index 0

Texel index (2,0), (3,0), (2,1), (3,1) loaded by thread with index 1

…

0,0 1,0 2,0 3,0 4,0 5,0 32,0 33,0 34,0 35,0 36,0 37,0

20

IMPLEMENTATION

For exchanging the data between the MIPs groupshared memory and optionally wave operations are
used.

If wave operations are used

→ Reduced VGPRs

For bits per pixel (bpp) <= 16, we can also use FP16

→ Reduced VGPRs

→ Reduced groupshared memory

Less number of VGPRs and groupshared memory can be especially beneficially for overlapping FFX
SPD with other work in parallel or when used on the async compute queue

→ Potentially less work in flight limited

21

INTEGRATION

22

INTEGRATION - CPU

Provide as constants:

• number of MIP levels to be computed per slice (maximum is 12)

• number of total thread groups: ((widthInPixels+63)>>6) * ((heightInPixels+63)>>6) * (numberOfSlices)

• [optional] offset of thread groups, in case only a sub-rectangle of the source texture has modified data

Use the SpdSetup function to compute the correct thread group offsets and the corresponding number of total thread groups per slice

Bind the resources ☺

→ source texture + optionally sampler

→ output MIPs (can be same resource as source texture or different resource)

Initialize your global atomic counter to 0 – this only needs to be done once for the first run of SPD. SPD will reset the counter after each run.

Dispatch the shader

vkCmdDispatch(cmdBuf,(widthInPixels+63)>>6,(heightInPixels+63)>>6,numberOfSlices);

23

INTEGRATION - GPU

Resources:

• Source image

• Destination images [# of output MIPs]

• Global atomic counter → a single unsigned integer, read & write access, per slice

• Constants

• [optional] Sampler

If the 2x2 -> 1 reduction function is computing the average

→ sample from the source image using a bilinear filter

24

INTEGRATION - GPU

Setup pre-portability-header defines (sets up GLSL/HLSL path, etc.)

#define A_GPU 1

#define A_HLSL 1 // or // # define A_GLSL 1

→ All following code samples use HLSL

for PACKED version

#define A_HALF

Include the portability header

#include "ffx_a.h"

25

INTEGRATION - GPU

Define groupshared memory variables

groupshared AU1 spd_counter; → store current global atomic counter for all threads within the thread group

groupshared AF4 spd_intermediate[16][16]; → intermediate data storage for inter-mip exchange

PACKED version

groupshared AH4 spd_intermediate[16][16];

Separating the channels is also possible – we recommend trying out both and measuring performance ☺ it can vary from format and number of channels

groupshared AF1 spd_intermediateR[16][16];

groupshared AF1 spd_intermediateG[16][16];

groupshared AF1 spd_intermediateB[16][16];

groupshared AF1 spd_intermediateA[16][16];

or for PACKED version:

groupshared AH2 spd_intermediateRG[16][16];

groupshared AH2 spd_intermediateBA[16][16];

26

INTEGRATION - GPU

Define SPD interface functions

Use the slice parameter if downsampling a cube or array texture as 3rd component of the index

AF4 SpdLoadSourceImage(ASU2 p, AU1 slice){ return imgSrc[p]; }

AF4 SpdLoad(ASU2 p, AU1 slice){ return imgDst[5][p]; } // load from output MIP 5

void SpdStore(ASU2 p, AF4 value, AU1 mip, AU1 slice){ imgDst[mip][p] = value; }

If you use sRGB or UNORM, you need to transform your values to linear color space and back. For an approximation you
can use:

AF4 SpdLoadSourceImage(ASU2 p, AU1 slice){ return imgSrc[p] * imgSrc[p]; }

AF4 SpdLoad(ASU2 p, AU1 slice){ return imgDst[5][p] * imgDst[5][p]; }

void SpdStore(ASU2 p, AF4 value, AU1 mip, AU1 slice){imgDst[mip][p] = sqrt(value);}

Add boundary checks if texture resolution is not a power of 2

27

LOAD FROM SOURCE IMAGE

Standard, default solution:

AF4 SpdLoadSourceImage(ASU2 p, AU1 slice){return imgSrc[p];}

If your reduction function is just computing the average, we recommend you use a bilinear sampler:

AF4 SpdLoadSourceImage(ASU2 p, AU1 slice) {

//invInputSize is additionally passed as constant

AF2 textureCoord = p * invInputSize + invInputSize;

return imgSrc.SampleLevel(srcSampler, textureCoord, 0); }

If you downsample a cube texture or an array texture, use the slice parameter as 3rd index
component.

28

INTEGRATION - GPU

Define SPD interface functions

void SpdIncreaseAtomicCounter(AU1 slice){
InterlockedAdd(globalAtomic[0].counter[slice], 1, spd_counter); }

AU1 SpdGetAtomicCounter() { return spd_counter; }

Void SpdResetAtomicCounter(AU1 slice)

{

globalAtomic[0].counter[slice] = 0;

}

AF4 SpdLoadIntermediate(AU1 x, AU1 y){ … }

void SpdStoreIntermediate(AU1 x, AU1 y, AF4 value){ … }

29

LOAD AND STORE TO LDS

AF4 SpdLoadIntermediate(AU1 x, AU1 y){ return spd_intermediate[x][y]; }

void SpdStoreIntermediate(AU1 x, AU1 y, AF4 value){
spd_intermediate[x][y] = value; }

You need to adapt above functions to your groupshared memory setup, e.g. if you only have one
channel use:

groupshared AF1 spd_intermediate[16][16];

AF4 SpdLoadIntermediate(AU1 x, AU1 y){

return AF4_x(spd_intermediate[x][y].x); }

void SpdStoreIntermediate(AU1 x, AU1 y, AF4 value){

spd_intermediate[x][y] = value.x; }

30

CUSTOM REDUCTION FUNCTION

Define your reduction function. Input are the 2x2 quad values, output is one single value.

For example you can compute the average of all 4 values:

AF4 SpdReduce4(AF4 v0, AF4 v1, AF4 v2, AF4 v3) {

return (v0+v1+v2+v3)*0.25; }

31

INTEGRATION – GPU - PACKED

If you use the packed version of FFX SPD, every function has the suffix H and uses the packed
types:

AH4 SpdLoadSourceImageH(ASU2 p, AU1 slice){ … }

AH4 SpdLoadH(ASU2 p, AU1 slice){return AH4(imgDst[5][p]);}

void SpdStoreH(ASU2 p, AH4 value, AU1 mip, AU1 slice){imgDst[mip][p] =

AF4(value);}

32

INTEGRATION - GPU

Setup FFX SPD defines

If you only use the PACKED version of FFX SPD

#define SPD_PACKED_ONLY

If you use a bilinear sampler to load the source texture (recommended!)

#define SPD_LINEAR_SAMPLER

If subgroup operations are not supported / if you can‘t use SM6

#define SPD_NO_WAVE_OPERATIONS

Include the FFX SPD header file

#include "ffx_spd.h"

33

INTEGRATION - GPU

Call the FFX SPD function:

[numthreads(256,1,1)]

void main(uint3 WorkGroupId : SV_GroupID, uint LocalThreadIndex : SV_GroupIndex) {

SpdDownsample(AU2(WorkGroupId.xy), AU1(LocalThreadIndex),

AU1(mips), AU1(numWorkGroups), AU1(WorkGroupId.z),

AU2(workGroupOffset) // optionally

);

// PACKED

SpdDownsampleH(AU2(WorkGroupId.xy), AU1(LocalThreadIndex),

AU1(mips), AU1(numWorkGroups), AU1(WorkgroupId.z)

AU2(workGroupOffset) // optionally

);

};

34

36

DISCLAIMER & ATTRIBUTION

DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and
typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but
not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks
of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or
revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof
without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR
IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT,
INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN,
EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2020 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, RadeonTM and combinations thereof are trademarks of Advanced
Micro Devices, Inc. in the United States and/or other jurisdictions. Vulkan is a registered trademark of the Khronos Group Inc. DirectX is a registered
trademark of Microsoft Corporation. Other names are for informational purposes only and may be trademarks of their respective owners.

