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World War Z
• Cooperative 3rd person shooter, up to 4 players

• Large zombie crowds onto the screen

• PC rendering

• Vulkan/DX11 backends

• Consoles support (Xbox One/PS4)

• 30 fps

• 4k rendering (dynamic resolution)
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Pipeline overview
• Full depth prepass

• Deferred shadowmask (4 lights)

• Forward+ shading

• GPU-driven visibility system

• 2 frames latency



5

SSAO

Capsule AO

Shadows

Light Froxel Mask

SSR

GPU Workflow

Z-Pass
Forward+

Shading
Postproc Present Z-Pass

Visibility
CPU Readback
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Depth + Vertex Normals
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Shadowmask: 4 lights, filtered



8

SSAO + Capsule shadows[Iwanicki13]
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After shading & postproc
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Short review
• Check presentations from the GDC 2019 for more details

• Zombie rendering tech

• “High zombie throughput in modern graphics”

• Lightmap technology

• “Enabling light baking workflows”
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Why Vulkan?
• Designed to make CPU/GPU frame time lower

• Multithreading

• Async Compute

• Explicitly manage memory

• Implement dynamic resolution

• Alias memory resources

• Runs on different operating systems
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CPU performance
• Zombie crowds

• Large number of drawcalls (up to 3k)

• Chance to be CPU-bound

IDLE
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CPU performance
• Wait GPU occlusion query (OQ) results

• Reduce colorpass DIPs number by 30%

Z-Pass
Wait query 

results
ColorPassRenderThread work 

CPU render submission
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CPU performance
• Possible GPU idle

• GPU has done its job, but CPU is not ready to submit new commands

GPU IDLE
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CPU performance
• Direct3D 11

• Dedicated driver thread

• Explicitly flush command buffer queue

• Extra CPU time cost

• Vulkan

• Manually control submission

• Split work across several threads

•
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CPU performance
• Record command buffers in parallel

• Check # of physical cores

• If >= 4, use 1 main + 2 extra threads scheme

• Split the most largest passes

• Z Prepass

• Shadowmap

• Colorpass

Main thread

Thread #1

Thread #2

Recording

Recording

Recording

Submit command buffers
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CPU performance
• World War Z

• 24 command buffers per frame

• Double buffering to avoid synchronization

• Wait for GPU before the main shading pass

• Only 5 queue submissions

• Each vkQueueSubmit has limited CPU overhead
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Multithreading benefits
• Separate recording from submission

• Allows for much higher throughput

• In critical cases may save more than 40% of CPU time

• From 18-20 ms down to 12-16 ms (AMD Ryzen 7 2700X)
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GPU performance
• Improve GPU utilization

• Share resources with ROP-bound passes

• Shadowmaps, occlusion testing...

• Use another hw queue

• Run compute shaders simultaneously

Command buf #0

Command buf #1

Command buf #2

Graphics & Compute Queue

Async Compute Queue
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GPU async workflow

SSAO

Capsule AO

Shadows

Light Froxel Mask

SSR

Z-Pass
Forward+

Shading
Postproc Present Z-Pass

Visibility
CPU Readback

Raster

Compute
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GPU occupancy
• VGPR pressure

• Material fetching

• Reflection & lighting calculation loops

• Try to keep your registers amount as low as possible

• Helps to hide memory latency

•
VGPR <=24 28 32 36 40 48 64 84 <=128 > 128

Waves 10 9 8 7 6 5 4 3 2 1
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GPU occupancy
• Pack divergent data tightly

• 2xfp32 to 1xfp16

• packHalf2x16 / unpackHalf2x16

• GL_ARB_gpu_shader_int64

• 64-bit bitwise operations

• Apply cross-lane wave intrinsics

•
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GPU occupancy

vec4 albedoCol = GetAlbedoColor 

(texUV.xy);

uint2 packedAlbedo = 

uint2(packHalf2x16(albedoCol.xy), 

packHalf2x16(albedoCol.zw));

....

vec4 unpackedAlbedo = 

float4(unpackHalf2x16(packedAlbedo.x), 

unpackHalf2x16(packedAlbedo.y));

image_sample  v[0:3], v[0:2], s[8:15], 

s[16:19] dmask:0xf

v_cvt_pkrtz_f16_f32  v0, v0, v1                     

v_cvt_pkrtz_f16_f32  v1, v2, v3  

....

v_cvt_f32_f16  v2, v0

v_cvt_f32_f16  v0, v0 src0_sel: WORD_1

v_cvt_f32_f16  v4, v1

v_cvt_f32_f16  v1, v1 src0_sel: WORD_1
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GPU performance
• Run compute shaders in parallel

• Can save up to 1.5 ms (10 %) in some cases (AMD Radeon RX480)

• Can greatly reduce VGPRs num from intrinsics & packing

• Best case: from 113 up to 64

• Decrease GPU frame time by 33%

•
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Memory management
• Vulkan® Memory Allocator from AMD

• https://gpuopen.com/gaming-product/vulkan-memory-allocator/

• Designed to: 

• Better manage memory

• Optimize for specific platforms

• Alias transient resources

https://gpuopen.com/gaming-product/vulkan-memory-allocator/
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Alias transient resources
• Fixate render target amount beforehand

• Analyze lifetime dependencies

• Store sharemasks for each RT

• Want to achieve lower upper memory bound

0111b 0011b 0101b
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Alias transient resources
• For each target get aliased resources

• Calculate memory pool block layout

• Share space with most similar placed RT

• respect mask bits

• Allocate device memory block to cover all laid out targets

SHADOWMAP_0 (0111b)

OUTLINE_BUF (0011b) HDR_BUF_0 (0101b)

HDR_BUF_1 (1001b)
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Alias transient resources
• Allocate first target #0 (sharemask: 0111b)
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Alias transient resources
• Process target #1 (0011b)

• It’s size is lower and (mask0 & mask1) != 0

• Use same address as previous rt
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Alias transient resources
• Target #2 (sharemask 0101b)

• Skip resource #1 block (no common bits)

• Use remaining space within resource #0 space
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Alias transient resources
• Target #3 (1000b)

• No target to share with, place to the end of the pool

Memory allocation
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Alias transient resources
• Take into account alignment requirements

• Calculate appropriate offsets

• Utilize produced alignment holes

• Try to overlap them with next blocks
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Alias transient resources
• Can be used to save video memory

• More than 50% (351 vs 198 Mb)

• Carefully share compressed RT with UAVs

• Use explicit barrier to switch between 2 images

• Old layout = UNDEFINED
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Dynamic resolution
• For each render target

• Create alternate size versions

• Map them to the mem address of original target

3840x2160

2880x1620

1920x1080
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Dynamic resolution
• Set the FPS goal target

• Measure frame statistics:

• CPU/GPU timings

• Use exponential smooth average

• 2 frames history

• Faster response to frameload changes

•
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Dynamic resolution
• GPU bound

• Average fps < target fps

• Drop resolution by 1 step (5 %)

• Average GPU time higher than desired

• Use more aggressive scheme (2 steps) (10 %)

• Otherwise (GPU usage < 90%)

• Increase res by 1 step (5%)

•

•
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Dynamic resolution
• Apply downscale immediately

• Near constant framerate

• Upscale resolution after specified delay (20 frames)

• Don’t want to switch resolution too often

• Can makes the final image sharper 

•

•
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Dynamic resolution

• 3840x2160 resolution

• Horizontal

• Frame number

• Vertical:

• Render target percentage

• Average GPU time

• Low GPU time is better

•

•
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PSO management
• vkCreateGraphicsPipelines works rather slow

• Especially for the first time calls

• Want to decrease level loading time

• Want to eliminate potential spikes during gameplay sessions

•

•
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PSO management

Shaders

Full cache Scene only

Particles

Dynamic decals

Post-process

(all combination accessible)

Objects materials

Static SFXes

(combinations used in scene)
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PSO management
• Serialize scene PSO creation data during export

• Shader defines, renderstates, rendertarget formats,...

• Create shaders during the level start

• But what we should do with the full cache ones?

•

•
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PSO management
• Simple solution :)

• Ask QA to play a couple of sessions for each level

• Record data about used full cache PSO

• Use this information on export stage

• Just works in our case

•

•
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PSO management
• Can reduce shader creation time significantly

• Level loading: from 10 min up to 1.5

• Delete unused PSOs

• Sometimes migrate to system ram

• Always enable pipeline objects cache

• Could help when run game not for the first time

•

•
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AMD DevTech

• We provide direct support with developers.

• Help with optimizations and profiling.

• Work with the driver teams to make sure that consumers have better experience.

• Deal with GPU specific issues.



46

Transfer queue

• Vulkan exposes using the hardware DMA engine though the use of transfer queues.

• The transfer queue is helpful on all platforms except APUs.

• This piece of hardware can run completely async to the graphics and compute queues.

• It is a faster way to transfer data across the PCI-e® bus.

• Must be explicitly used.

• If you don’t use the transfer queue, then uploads will be going down the slow path.

• Best used asynchronously. Uploads and downloads should not block the rendering loop.

• The graphics queue should not wait for the transfer queue.
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Texture Streaming

• Transfer queue is designed for texture uploads and streaming.

• In the streaming case the old texture can be used while the texture is streaming.

• Once the texture is uploaded all that has to be done is to update the next frames descriptors.

• With persistent descriptors you will want 2 copies of every descriptor

• This can allow updating without doing a full GPU/CPU sync.
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Texture Streaming

New texture request

Read texture
Submit 

commands
Wait for complete

CPU 

streaming 

thread

Transfer
Transfer  

queue
Signal 

fence

Update descriptor

Barrier
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Transfer queue gotchas

• Transfer queue can have a different granularity then other queues.

• The copy must be either a full sub-resource copy or be divisible by the queue granularity.

• Undefined behavior can happen if you don’t follow the rules.

• Common seen behavior is that the transfer queue will hang.

• Missing barrier on queue could cause corruption.

• Stale data in cache, etc.
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Stencil optimizations

• A stencil mask is created with a checkerboard like pattern.

• This is done with 4 draws.

• Each draw has a different stencil ref and rejects pixels based on the position.

Draw 1 Stencil Draw 2 Stencil

Draw 3 Stencil Draw 4 Stencil

Pixel Quad
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Stencil optimizations

• Radeon GPU Profiler shows very low occupancy.

• Why is the occupancy low?

• Shader is very small and does not do much.

• Shader waves are finishing faster than they can be launched.
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Stencil optimizations

• Enter VK_EXT_shader_stencil_export

• VK_EXT_shader_stencil_export is an extension supported by multiple vendors that allows the pixel shader to set 

the stencil ref value per pixel.

• With this we can combine the 4 draws into 1.

• GLSL

• gl_FragStencilRefARB = int(lut[y * DITHER_PATTERN_SIZE + x]);

• HLSL

• int main() : SV_StencilRef
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Stencil optimizations

• Saw ~75% savings for the pass.
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Subgroup ops

• Subgroup ops introduced in Vulkan 1.1, supported by most desktop hardware, including AMD

• Enable bringing over optimizations from other gaming platforms.

• Allow lots of new potential optimizations.

• Query the driver to see what ops are supported.
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Subgroup ops

• Reduced divergence in the wave and scalarized some resources by using subgroupOr to unify 

the lighting bitmask.

• Before the shader would loop though every light in the bitmask.

• Changed it so every lane goes though the same lights. This allows some resources to be converted to scalars. 

Lane 1

Lane 2

Lane 3

Lane 4
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Subgroup ops

• Reduced divergence in the wave and scalarized some resources by using subgroupOr to unify 

the lighting bitmask.

• Before the shader would loop though every light in the bitmask.

• Changed it so every lane goes though the same lights. This allows some resources to be converted to scalars. 

Lane 1

Lane 2

Lane 3

Lane 4

OR
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Subgroup ops

• Reduced divergence in the wave and scalarized some resources by using subgroupOr to unify 

the lighting bitmask.

• Before the shader would loop though every light in the bitmask.

• Changed it so every lane goes though the same lights. This allows some resources to be converted to scalars. 

Lane 1

Lane 2

Lane 3

Lane 4

OR Scalar promotion
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Subgroup ops

• Scalarized cubemask look ups by using subgroupBroadcastFirst to convert cubemask index to 

a scaler.

• subgroupBroadcastFirst used a lot for scalarization of shader code.

Index 1

Index 5

Lane 1

Lane 2

Lane 3

Lane 4

Index 1

Index 1
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Subgroup ops

• Scalarized cubemask look ups by using subgroupBroadcastFirst to convert cubemask index to 

a scaler.

• subgroupBroadcastFirst used a lot for scalarization of shader code.

Index 1

Index 5

Lane 1

Lane 2

Lane 3

Lane 4

Index 1

Index 1

Scalar promotion

Index 1
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Subgroup ops

• Scalarized cubemask look ups by using subgroupBroadcastFirst to convert cubemask index to 

a scaler.

• subgroupBroadcastFirst used a lot for scalarization of shader code.

Index 1

Index 5

Lane 1

Lane 2

Lane 3

Lane 4

Index 1

Index 1

Scalar promotion

Index 1
If ==

Index 1

Index 1

Index 1
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Subgroup ops

• Scalarized cubemask look ups by using subgroupBroadcastFirst to convert cubemask index to 

a scaler.

• subgroupBroadcastFirst used a lot for scalarization of shader code.

Index 5

Lane 1

Lane 2

Lane 3

Lane 4
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Subgroup ops

• Scalarized cubemask look ups by using subgroupBroadcastFirst to convert cubemask index to 

a scaler.

• subgroupBroadcastFirst used a lot for scalarization of shader code.

Index 5

Lane 1

Lane 2

Lane 3

Lane 4

Scalar promotion

Index 5
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Subgroup ops

• Scalarized cubemask look ups by using subgroupBroadcastFirst to convert cubemask index to 

a scaler.

• subgroupBroadcastFirst used a lot for scalarization of shader code.

Index 5

Lane 1

Lane 2

Lane 3

Lane 4

Scalar promotion

Index 5

Index 5

If ==
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Q & A
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Addendum

Testing done by Jordan Logan and Nikolai Petrov. 

Testing by Jordan done on AMD Ryzen™ 7 1800x Processor, 2x16GB DDR4-2666, Vega64 (driver 19.10.2), 
ASUS Prime X370-PRO Socket AM4 motherboard, WD Blue 250GB M.2 SSD, Windows 10 x64 Pro (RS4).

Testing by Nikolai done on AMD Ryzen™ 7 2700x , 32GB, RX 580 (driver 19.10.2), Windows 10 x64.
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