
Memory Management in the
APEX Engine

16-17 MAY 2022

Lou Kramer Daniel Isheden
AMD Avalanche Studios Group

Memory Management in the APEX Engine - | Digital Dragons

Lou Kramer
AMD

Daniel Isheden
Avalanche Studios Group

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 4

Basics about memory management and tooling

• Memory types

• Committed / Placed Resources

• Over-Commitment

• Application, Driver, Operating System

• Tools

Memory Management in the APEX Engine

• The APEX Engine

• Resource types

• Problems & Solutions

AGENDA

This talk will focus only on PC with a dedicated GPU

API specific terminology is coloured in

Direct3D® 12 Vulkan®

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 5

MEMORY TYPES – RECAP

Video RAM (VRAM)

System RAM (SysRAM)

VB, IB, CBV, SRV, RT, DS, UAV, …

void* mappedPtr;

Copy… - PCIe®

Physically:

Memory Pool L1
Device Local

Memory Pool L0

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 6

Logically:

MEMORY TYPES – RECAP

Default Heap
Device Local

Upload Heap
Host Visible |
Host Coherent |

Readback Heap
Host Visible |
Host Coherent |
Host Cached

VB, IB, CBV, SRV, RT, DS, UAV, …

void* mappedPtr;

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 7

CREATE A RESOURCE

Resource /
Resource

Description

Memory

Figure out
type, size,
alignment

Allocate
Memory

Bind

Create
Resource

Method 1: Allocate just what’s needed for the resource

Method 2: Allocate large blocks (e.g. 256 MiB) and sub-allocate

→ Committed Resource
→ Dedicated Allocation

→ Placed Resource

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 8

• A separate memory allocation per committed resource

• Each memory allocation comes with an overhead:

• This can take up to several milliseconds (or even seconds)

COMMITTED RESOURCE

Application Driver/OS

Allocate memory
in VRAM

Requests to allocate
memory in VRAM

Need to find free space in
video memory

Silently migrate some other
allocations to system

memory to make free space
Zero the entire memory!

Return Success

No free space

Return Out of
Memory error

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 9

• Once the memory is allocated and the resource is created,

• they don’t work any slower or different than a placed resource

• On Vulkan®, there is also a limited maximum number of allocations (e.g., 4096)

COMMITTED RESOURCE

100 Allocations total

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 10

• A large memory block (e.g., 256 MiB) is allocated when needed

• Sub-allocate parts of them for the placed resource

PLACED RESOURCE

Application

Leave the memory as is,
memory can contain

garbage data

Sub-allocate memory

Return Success

No free space in
allocated memory

blocks

Requests to allocate
memory in VRAM

As before …

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 11

PLACED RESOURCE

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 12

• Over commitment – when your video memory is full
• New allocations may fail

• Existing allocations can be migrated to system memory

→ performance degradation

• Some resources tend to have a high impact on performance

• You really don’t want them to migrate to SysRAM, e.g., render targets

• When silently migrated, the whole allocation is affected and all resources associated with it
• Not just a single resource. Not just a single memory page

OVER-COMMITMENT

Silently migrate some other
allocations to system

memory to make free space

No free space

Return Out of
Memory error

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 13

• How we can prevent a performance critical resource to get migrated to system memory?

• There is no explicit control

• No way to query for when and what

Application

• Creates resources

• Destroys resources

• Sets a preferred heap

• Sets residency priority

• Knows about all resources and how they are used

• Can use Evict/Make Resident on Direct3D®12

• Moving things is a fairly expensive operation and can cause stuttering

OVER-COMMITMENT

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 14

Driver

• Sets also residency priorities

• The driver allocates memory for implicit resources
• Command buffers

• Descriptors

• Shader pipelines

• Internal resources

OVER-COMMITMENT

SysRAM

VRAM

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 15

Operating System (Microsoft®’s Video Memory Manager)

• Knows about other applications running in parallel

• Ensures that each process receives a fair share[1]

• Can migrate memory blocks to system memory

• Ensures that the transition of video to system memory is invisible to the application[2]

OVER-COMMITMENT

[1] https://docs.microsoft.com/en-us/windows-hardware/drivers/display/using-memory-segments-to-describe-the-gpu-address-space
[2] https://docs.microsoft.com/en-us/windows-hardware/drivers/display/mapping-virtual-addresses-to-a-memory-segment

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 16

We can try to increase the likelihood for a performance critical resource to stay in VRAM by:

Having enough free space on the VRAM

• Query for budget and stick to it

• DXGI_QUERY_VIDEO_MEMORY_INFO

• VK_EXT_memory_budget→ VkPhysicalDeviceMemoryBudgetPropertiesEXT

• Query regularly for usage and budget

• Try to stay at usage < budget

OVER-COMMITMENT

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 17

We can try to increase the likelihood for a performance critical resource to stay in VRAM by:

Having enough free space on the VRAM

• Free or evict memory blocks when possible before creating new resources

• Alias Memory

OVER-COMMITMENT

G-buffer fill lighting particles

G-buffer

postprocessing

helper RT

Pass

Memory

Reuse same memory

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 18

We can try to increase the likelihood for a performance critical resource to stay in VRAM by:

Having enough free space on the VRAM

• Place VB, IB, CBV that are read only once by the GPU to the upload heap (system memory)
• Save memory for another copy of the resource

• Can even save time that’s needed for the transfer

• Reading will be slower though

• Good for buffers

OVER-COMMITMENT

Upload Heap
Host Visible |
Host Coherent |

VB, IB, CBV …

void* mappedPtr;

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 19

We can try to increase the likelihood for a performance critical resource to stay in VRAM by:

Create performance critical resources as committed resources

• After creating critical resources as committed, set them high residency priority

• No need to allocate a new big chunk of memory – just the amount that is actually required gets allocated
• increases chance there is still enough free space

• Critical resources are not scattered in different large allocated memory blocks
• Whole memory block gets evicted and thus, everything that’s in it

• If every memory block contains a critical resource, you will always loose

OVER-COMMITMENT
: performance critical resource

: not performance critical resource

Evicted memory block

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 20

We can try to increase the likelihood for a performance critical resource to stay in VRAM by:

Try out different memory block sizes for your placed resources
• The optimal size can vary depending on your specific case (e.g., 256 MiB, 64 MiB, …)

If your memory is too fragmented:

• Create custom pools for certain resources

• e.g., resources that should certainly be freed when unloading a level

• When streaming resources in and out, fragmentation is expected

• try to defragment

OVER-COMMITMENT

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 21

• VMA/D3D12MA JSON Dumps

• Radeon™ Memory Visualizer

• Windows® Performance Analyzer

TOOLS

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 22

• VMA and D3D12MA are open source memory management libraries for Vulkan ® and Direct3D® 12

• https://gpuopen.com/d3d12-memory-allocator/ and https://gpuopen.com/vulkan-memory-allocator/

• Both come with an auxiliary tool to visualize the internal state of the allocator

• Lists all the memory blocks for each heap and their size

• Shows the resources in each memory block
• Resource size and type

• Shows free memory in each memory block

→ useful to analyse fragmentation

→ useful to determine if memory block size is a good fit for the
application’s resources

VMA/D3D12MA JSON DUMPS

https://gpuopen.com/d3d12-memory-allocator/
https://gpuopen.com/vulkan-memory-allocator/

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 23

• AMD tool to get an insight in how applications use memory for graphics resources from a driver
perspective

• https://gpuopen.com/rmv/

• Lists the available heaps and the resources placed in them including driver internal resources

• You can compare two snapshots to find memory leaks

RADEON™ MEMORY VISUALIZER

https://gpuopen.com/rmv/

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 24

• Windows® Performance Analyzer is part of the Windows® Performance Toolkit, which is part of the
Windows® 10 SDK

• Shows all current processes

• Shows how much memory each
process allocated

• Lists all evicted memory blocks
from VRAM to SysRAM
under GPU Segment -1.

• The other GPU Segments map to the heaps you see in RMV

WINDOWS® PERFORMANCE ANALYZER

AMD PUBLIC | DIGITAL DRAGONS 2022 | Memory Management in the APEX Engine | MAY 2022 25

DISCLAIMER

The information contained herein is for informational purposes only and is subject to change without notice. While
every precaution has been taken in the preparation of this document, it may contain technical inaccuracies,
omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this
information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or
completeness of the contents of this document, and assumes no liability of any kind, including the implied
warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or
use of AMD hardware, software or other products described herein. No license, including implied or arising by
estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the
purchase or use of AMD products are as set forth in a signed agreement between the parties or in AMD's Standard
Terms and Conditions of Sale. GD-18

© 2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Radeon, Ryzen, and
combinations thereof are trademarks of Advanced Micro Devices, Inc. Vulkan and the Vulkan logo are registered
trademarks of the Khronos Group Inc. PCIe and PCI Express are registered trademarks of the PCI-SIG Corporation.
DirectX is a registered trademark of Microsoft Corporation in the US and other jurisdictions.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective owners.

DISCLAIMER & ATTRIBUTIONS

Resources

● Many categories of resources

● Varying properties

○ Size

○ Number of resources

○ Lifetime

○ CPU/GPU usage

○ Performance importance

● D3D12MA and VMA

Render targets

● GPU read/write

○ Performance critical

● Resolution-dependent

○ 500-2000 MB

● Created at startup

○ Occasionally resized

GPU storage buffers

● Temporary buffers

○ Pre-skinned vertices

○ Compute shader generated terrain mesh

○ GPU-generated vegetation instance data

● GPU read/write

○ Sometimes performance critical

● ~ 100 MB

● Some allocated on startup, some on demand

Streamed vertex/index/material buffers

● GPU read-only

○ Copied from staging buffer

● Almost negligible size

● Streamed in and out

Streamed textures

● GPU read-only

○ Copied from staging buffer

● Loose memory budget

○ 500 - 2000+ MB

○ Not manual resource placement

○ Simply tracks total memory usage

○ Reference counted

● Large range of sizes

● Streamed in and out

Shader pipelines

● They do take up VRAM!

○ Driver-managed

○ Visible in Radeon Memory Visualizer!

● Many, many shader permutations

● Almost 100 MB

○ ~256 B - 20 KB each

Constant buffers

● Camera matrices, constants, etc

● CPU generated each frame

● CPU RAM mapped memory

○ Caching on GPU hides cost

● Rotating buffers

○ Linear suballocator

Staging buffers

● Temporary buffers in RAM

● Used to initialize buffers/textures

● Similar system to constant buffers

Performance issues

● Sudden drops to <10 FPS

○ Often after window resize

● GPU-limited

○ Abnormally high PCI-E bus load?

● Performance critical resource spilled to RAM!

○ Confirmed with Radeon Memory Visualizer

Problems

● Memory usage spikes

● Fragmentation

● Simply running out of VRAM

Problem - Memory spikes

● Cannot destroy resource in use by GPU

○ Engine defers deletion for 1-2 frames

● Resized render targets?

○ Massive VRAM usage spike

● Radeon Memory Visualizer useful

New render targets created Old render targets deleted

Old render targets

New render targets

Both exist

Solution - Immediate resource destruction

● Wait for GPU to finish all pending work

● Delete resources immediately

● Then create new resources

● Avoid delete, create, delete, create, …!

● First delete all resources

● THEN recreate all resources

○ Avoids potential fragmentation

Solution - Resource recreation

Old, to-be-destroyed Old, to-be-destroyed

OldNew

● Resources streamed in and out

● Fragmentation

● Inflates memory usage

○ Higher risk of paging

● Critical resources mixed in

○ Risk being paged out with the entire block

● Radeon Memory Visualizer useful

Problem - Fragmentation

Solution - Committed resources

● Separate out performance critical resources

○ Create as committed resources

● Individual residency

○ No longer causes or suffers from fragmentation

● Which resources?

○ Render targets

○ Unordered access textures/buffers

○ “Large” textures

● Reminder: Max allocation limit!

Solution - Defragmentation

● Background defragmentation

○ New D3D12MA feature

● No/few level switches

● Must update resource references

○ Resource tables/descriptor sets

○ Bindless resources

Problem - Simply running out of VRAM

● VRAM is scarce and highly contested

○ Multiple high resolution monitors

○ Heavy 3D artist software

○ Web browsers

○ Video recording software

○ etc…

● Spilling is still possible

○ Especially for our artists

● Can happen at any time

○ Want to minimize performance impact

Optimal resource priorities

1. Depth buffers

2. Render targets/unordered access textures

3. Compute shader intermediate buffers

4. Read-only textures

5. Read-only buffers

“Solution” - Assigning priorities

● Simple heuristic

○ High and normal priority resources

● Critical resources

○ Depth/color render targets

○ Unordered access textures/buffers

● Can only assign priorities to entire blocks

○ Critical resources are committed resources

● We don’t use Evict()/MakeResident()

○ Resource unusable after eviction (not the same as paging)

○ Difficult to identify eviction candidates

Lou Kramer
AMD

Thank you

Daniel Isheden
Avalanche Studios Group

