THE MOST COMMON
RADEON| VULKAN MISTAKES

TECHNOLOGIES GROUP DOMINIK WITCZAK, AMD

TECH REVIEW: DANIEL RAKOS, AMD
DERRICK OWENS, AMD

AMD¢1

WHO?

e Dominik Witczak
« MTS Software Development Engineer at AMD

e Regular contributor to the following standards:
e OpenGL (4.x)
 OpenGL ES (3.0 and beyond)
* Vulkan

» After-hours demoscene activist:
* Event organizer
* Programmer

 Trivia:

* Graduated from WMil department back in 2010

AMDZU wmav2016

TECHNOLOCGIES GROUP

WHAT?

Agenda for today:

What is ?
What is it and is it not about?
Who is it for?

Problematic areas:

e Command queues

* Descriptor sets

* |mages

* Memory barriers

* Memory management
* Renderpasses

e Synchronization
AMDZCU wmav2016

VULKAN

THE BEGINNINGS

LES
> .
— m— e

o

B e
JAX 10U

A simplified view of a typical OpenGL o <

» CPU thread:

P GPU usage:

AMDZU wmav2016 ﬂcﬁoﬂgu?oy

VULKAN

THE BEGINNINGS

A simplified view of a typical OpenGL or <DX 1

— — e —

» CPU thread: (generate data) (upload data to GPU)

P GPU usage:

Why?
— CPU->GPU command submission is time-consuming:
— Only submit and start executing GPU-side if:

— All commands for a frame have been submitted..

— Command buffer fills up
— Upon app’s explicit request.

— App can submit different commands every frame:
— Cannot bake command buffers in advance!

AMDZU wmav2016

(change state) .

TECHNOLOCGIES GROUP

VULKAN

THE BEGINNINGS

» CPU thread 1: Generate data

» CPU thread 2: Generate data

» CPU thread (N-1): Generate data

» CPU thread N: Generate data

» Rendering thread: (upload data to GPU)r_ (change state) _ Dispatch/draw!

> GPU usage: _

AMDZU wmav2016

Swap buffers

RADEDON
Can we do any better?

VULKAN

THE BEGINNINGS

-

Typical OpenGL or <DX 10 app rendering pipeline (more adva

» CPU thread 1: Generate data —————— .
Use multiple rendering threads to streamline data uploads
» CPU thread 2: Generate data Generate as much data on GPU as possible ——————
b CPU thread (N-1): | el o i ok e Batch dravy calls by state conflguratlon
| Use compute shaders to calculate data
» CPU thread N: Generate data in parallel on some HW

» Rendering thread: (upload data to GPU)r_ (change state) _ Dispatch/draw!

Swap buffers

AMDZU wav 2016 Render as many frames in advance as possible to reduce GPU bubbles R

VULKAN

THE BEGINNINGS

— GPUs are highly asynchronous constructs:

— Designed to perform many kinds of tasks in parallel: = —

— Computations

— DMA transfers

— Rasterization

— Other (eg. accelerated image data conversion)

= But from API standpoint:

— GPU can only be requested to execute work chunks from one rendering thread!
— Apps cannot be trusted — CPU time spent on API call validation..
AMDZU wmav2016

TECHNOLOCGIES GROUP

VULKAN

THE BEGINNINGS

= Do we really care?

— More and more -bound apps are showing up on the market.
— Driver thread(s) consuming CPU time

— Increasing app complexity

— No easy way to address these in a cross-platform way.

- cannot leverage their full power on
— Only vendor-specific solutions exist (eg.)

= Not to mention use cases like:

— Multiple support

— VR
AMDZCU wmav2016

RADEDN

TECHNOLOCGIES GROUP

VULKAN

DO | NEED IT?

. addresses all of the discussed issues:
— Exposes as a set of command queue families.
— Command buffers can be submitted to queues from multiple threads.

— Application is responsible for:
— submitting work chunks to the right command queues.
— synchronization of jobs’ execution.

— Exposes available memory as a set of memory heaps.
— Application is responsible for flushes / invalidation / management.

= Applications are required to adapt to the running ’s capabilities.

" Misbehave and hang the

AMDZCU wmav2016 ﬁcﬁchEc?o!}I

VULKAN

DO | NEED IT?

* Who NEEDS

— -bound applications:
—Vast majority of information required to compute / render — prebaked at loading time.
— A frame can be rendered with just two commands!

—No driver-side validation = more time for stuff that really matters.

— -bound applications:

— Improve utilization by:
— Submitting compute / graphics jobs to relevant queue families.
— Performing VRAM -> VRAM & RAM <-> VRAM copy ops with transfer queues.

— No sudden performance drops or spikes:
- All -side caches are flushed, according to app-specified information, at predictable times.
— Driver no longer needs to do any guess-work.

AMDZCU wmav2016

RADEDN

TECHNOLOCGIES GROUP

VULKAN

DO | NEED IT?

= \Who MAY need

— Existing [<= applications:
— Moving to may or may not bring performance benefits.
— Likely to spend less CPU power.

= \Who does NOT need

—Prototype applications requiring rapid development time:

— Validation layers do not cover whole specification yet.
— Many incorrect use cases are still not detected.

— Steep learning curve.

— Simple applications which are not - or -bound:
— Unless for learning purposes, these are unlikely to benefit from

AMDZCU wmav2016

RADEDN

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: INTRODUCTION

= Qur driver has been out for a few months now.

= Top-level observations:

— is demanding to use, both app-side and time-wise.

— If an app works with GPU A, it doesn’t have to hold for GPU B.

— Common pit-falls:
— Barriers
— Correct data uploads
—Image transitions
—Renderpasses

—ISVs: generally reluctant to use validation layers.

— Please do. This saves both you and us a lot of time
AMDZCU wmav2016

RADEDN

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: COMMAND QUEUES

= CPU-side:
— No rendering threads in Vulkan

= GPU-side:
— Command queues are grouped by type(s) of commands they can execute.

" Problem:
— Number of command queues — hardware-dependent!
— Number of queue families = — hardware-dependent!

AMDZU wmav2016 RADEON

DDDDDDDDDDDDDDDDD

VULKAN

PROBLEMATIC AREAS: COMMAND QUEUES

= Why is this a problem?
— Efficient task distribution is now app’s responsibility.
— The solution must be able to up- and down-scale, depending on device caps.

— No open-source solutions available yet

— Only a single compute+gfx queue family guaranteed in

— Simple apps will likely rely solely on the presence of the universal queue..
— ..but wasn’t written with performance in the 1st place?!

= Solution:

— Test your rendering engine on various implementations.

AMDZCU wmav2016 RADEON

DDDDDDDDDDDDDDDDD

VULKAN

PROBLEMATIC AREAS: COMMAND BUFFERS

" |n Vulkan, command buffers: =
— ..hold commands to be executed GPU-side . — =—
- ..are reusable, unless explicitly stated otherwise by theapp.

" Problem:
— Apps often re-record command buffers every frame.

= Why is this a problem?
— Wastes a lot of CPU time.
— Not required in many cases.

AMDZU wmav2016 RADEON

DDDDDDDDDDDDDDDDD

VULKAN

PROBLEMATIC AREAS: COMMAND BUFFERS

= Problem:

— Apps re-record command buffers every frame. — = ——

= Solution:

— Move all parameters that affect the rendering logic to images / SBs / UBs.
— Pre-bake all command buffers once per each swapchain image, if necessary.
— Use indirect dispatch/draw commands if they improve command buffer reusability

AMDZU wmav2016 RADEON

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: MEMORY MANAGEMENT

" Memory management is also app’s responsibility:
— Physical device reports >= 1 memory heaps

— Each memory heap:
— has platform-specific size.
— may, but needs not be device-local.

— Memory heaps — not directly accessible to apps.
— Instead, the driver exposes an array of HW-specific ,memory types”:

'PropertyFlags - propertyFlags;

heapIndex;

— When alloc’ing memory, app specifies memory type index.

AMDZCU wmav2016 RADEON

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: MEMORY MANAGEMENT

= What'’s the hard part?

— Vulkan<->app contract is very thin.

— The following is guaranteed:

— At least one memory type is host-visible & host-coherent. =——
— At least one memory type is device-local.

— Buffer & image memory alloc’s must come from driver-specific memory types

— The types MAY vary, depending on:
— Object properties
— Object type

— But the best is yet to come..

AMDZU wmav2016 RADEON

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: MEMORY MANAGEMENT

= What'’s the hardest part?
— ISVs tend to ignore the maxmemoryAllocationCount limit:

lccationcount is the maximum number of device memory allocations, as created by vkallocateMemory, Which can simultaneously exist.

— The min max for the simultaneous live allocations limit is 4096.
— Very easy to reach in complex applications.
— The usual value reported by desktop implementations.

= Solution:
— Pre-allocate & manage available memory app-side.
— Avoid small memory allocations, sub-allocate them from larger ones.

AMDZCU wmav2016 IﬁcﬁchEc?o!}I

VULKAN

PROBLEMATIC AREAS: DESCRIPTOR POOLS

= Majority of access external data.
" |n
— These are exposed via

- cannot be created directly.
— Instead, they are retrieved from a instantiated by the app:

~uct VkDescriptorPoolCreateInfo {
ctureType =

scriptorPool®*

AMDZCU wmav2016 RADEON

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: DESCRIPTOR POOLS

= Problem:

- <maxSets> does not work as ISVs seem to expect.

" Frequently seen misunderstanding:
— I can allocate <maxSets> * {poolSizeCount * pPoolSizes} ”
— ,No? Your driver sucks, that’s what | can do with vendor X’s driver!”

= Correct understanding:
— Upto N of prealloc’ed

can be distributed to up to <maxSets>

ruct }1:5.1111- rPoolCreateInfo {

rPoolCreateFlags

AMDZCU wmav2016 - RADEON

| TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: SPARSE DESCRIPTOR BINDINGS

. are then grouped into for later usage.
— type <-> relations is defined by a :
— Actual / for consumption are bound in

= A is created with:

amplers;

AMDZCU wmav2016

RADEDN

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: SPARSE DESCRIPTOR BINDINGS

= Problem:

— How should a look for the following :
- 0:
- 2:
— Do | need to include a vkDescriptorSetLayoutBinding item for 1 or not?

AMDZCU wmav2016 IﬁcﬁchEc?o!}I

VULKAN

PROBLEMATIC AREAS: SPARSE DESCRIPTOR BINDINGS

" Problem: _, | | -
— How should a DS layout look for the following descrlpIQLsaL —_— .

— Binding 0: Storage buffer —_— ——= —

— Binding 2: Storage image ———— =

— Do | need to include a vkDescriptorSetLayoutBinding item for binding 1 or not?

= Solution:
— The app is inefficient, dummy bindings negatively affect performance.
— But if you really need them: yes, the binding is needed.
— Make sure to set ::descriptorcCount to 0 for each unused binding.

AMDZU wmav2016 RADEON

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: IMAGES

= |n Vulkan, texture:

— state is stored in Image Objects _ —— —
— data is stored in Memory Objects, bound to an Image Objeet = —— ————

|

— Type (1D, 2D or 3D)
— Base mipmap size
— Number of mipmaps

— Tiling type
— Usage flags
— Other miscellanea..

AMDZU wmav2016 RADEON

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: IMAGES

= |n Vulkan, texture:

— state is stored in Image Objects
— data is stored in Miemory Objects, bound to an

= Image Objects are created by specifying properties of the image data:
— The usual bits and bobs such as: |
— Type (1D, 2D or 3D)
— Base mipmap size
— Number of mipmaps

— Tiling type '
— Usage flags -
— Other miscellanea..

AMDZU wmav2016 RADEON

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: IMAGE USAGE FLAGS

. requires up-front declaration at creation time.

— Usage is a bit combination of one or more flags below:

ICIL ATTACHMEN
TTACHMENT B

= A driver may not provide support for certain
= When it does, setting restricts:

— supported

— maximum resolution, number of , etc.

AMDZCU wmav2016

RADEDN

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: IMAGE USAGE FLAGS

= Example:

— Consider an image created with VK_IMAGE_USAGE TRANSFERﬂJST Bmsag
— The image must not be used as a color attachment. = =
— App does not care.

= Qutcome:
— Undefined behavior

= Solution:

— This class of problems can be easily detected when validation is enabled.
AMDZU wmav2016 RADEON

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: IMAGE TILING

- setting determines data layout used by the
— . row-major row arrangement, each row potentially padded
— . platform-specific data arrangement, optimized for speed.

" Properties of

— Support a subset of functionality provided for
— Less performant

= Why bother wih then?
— Crucial if you need to read back data rendered by

AMDZCU wmav2016 RADEON

DDDDDDDDDDDDDDDDD

VULKAN

PROBLEMATIC AREAS: IMAGE TILING

= Common problem: ISVs copy data directly to
= Typical scenario:

— A is created with VK_IMAGE_TILING OPTIMAL setting.
— Application calls vaetImageSubr‘esour‘ceLayout() for A:

SubrescurceLayout (

. kImageSubresourc
} ubresourcelLayout®

VikImas 1— 111 resource

—Application tries to upload data using the ,,reported” characteristics.

AMDZCU wmav2016

RADEDN

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: IMAGE TILING

= Solution: -
— Use a staging buffer to copy data to optlmally tlled myag _ =

Create a buffer object and bind a memory regiontoit,. —— ::——':—:‘ =
Fill it with data. - —— —
Transition the image to GENERAL or TRANSFER_DST_OPTIMAL layout.

Schedule a copy op by calling vkCmdCopyBufferToImage().

Submit the command buffer, wait till it finishes executing.

Release the temporary buffer object.

A L

— Remember: buffer -> image copy ops will not work for IMS images.
— To upload data there, you’ll need to use an actual dispatch/draw call.

AMDZ\ wmav2016 ﬂcﬁoﬂgc?ny

VULKAN

PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS

. may (de-)compress or rearrange data on-the-fly
— Less bandwidth pressure => better performance

- and : transparent, heuristics-driven process.

— ; happens at time.

— Example: DCC (see)

= Hardware-level optimizations:

— Differ between HW architectures & HW generations.
— Generally vendor-specific

AMDZCU wmav2016

RADEDN

DDDDDDDDDDDDDDDDD

http://gpuopen.com/dcc-overview/

VULKAN

PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS

" |n
= must be moved to the right layout before usage.

— This can be requested by:
— Injecting into
— correct & configuration

— Get it wrong and visual corruption may occur:

I : ¥
™
M
™
M
™
M
™

AMDZCU wmav2016 ﬁcﬁchEc?o!}I

VULKAN

PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS

Image

(

layout)

¥

Lomimana pulicr 1

Render to Image A

Image A
(COLOR_ATTACHMENT_OPTIMAL -> SHADER_READ_ONLY_OPTIMAL layout)

Image A
(UNDEFINED -> COLOR_ATTACHMENT_OPTIMAL layout)

Dispatch call
(fetches texels from Image A)

Image A
‘ {SHADER READ ONLY OPTIMAL -> COLOR_ATTACHMENT_OPTIMAL layout) i

AMDZU wmav2016 ﬂcﬁoﬂggy

VULKAN

PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS

= Common problems: = e S
1. Image is transitioned into an mvalld_layeut —— — — == = -

l !

Render to Image A

SRANSFER DST OPTIMAL ->COLOR ATTACHMENT OPTIMAL layout

AMDZU wmav2016 RADEON

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS

= Common problems:
2. Old layout defined in an |mage barrlerT_s 1CC

Render to Image A

\

Image A
COLOR ATTACHMENT OPTIMAL -> SHADER _READ ONLY OPTIMAL layout

Dispatch call
fetches texels from Image A

Image A
PRANSFER DST OPTIMAL -> COLOR ATTACHMENT OPTIMAL layout

AMDZU wmav2016

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS

= Common problems:
3. ,Hey AMD, my app works on vendor Y’s driver, your driver sucks

— Some vendors ignore . We do not.
— Whose driver is wrong then? ©

= Solution:

= are constantly improving — use them!
— Test your software on various implementations.

AMDZCU wmav2016

'II

RADEDN

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS & RENDERPASSES

= Common problems:
4. ISVs misunderstand how transition

= are a novel, complex concept in
— Introduced to let the driver ,travel in time” and know in advance:

— what / will be rasterized to or accessed (When? How?)
— which need to be synchronized (When? How?)
— what layouts should be transitioned to, and when.

— That’s a lot of info to get wrong, especially when described manually ©

AMDZCU wmav2016

RADEDN

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS & RENDERPASSES =

= Common problems:

AMDZU wmav2016

Render subpass F

e — . D e ———

sition imag ‘es

Blur subpass F

HUD subpass F

Sum subpass F

" is described by user-specified

RADEDN
TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS & RENDERPAS—;

= Common problems:
4.

Blur subpass F—

Render subpass HUD subpass F

Sum subpass

: execution order is deduced from user-specified

AMDZ\ wmav2016 ﬂcﬁoﬂgc?ny

VULKAN

PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS & RENDERPASSES

= Common problems:
4. |ISVs misunderstand how

Render subpass® Image

Specified at renderpass create time: (VkAttachmentDescription)

- ;;initialLlayout (layout of the image when renderpass begins)
- ::finalLlayout (layout to transition to when renderpass ends)

Renderpass image transitions

AMDZCU wmav2016

transition

subpass

Specified for each subpass: (VkSubpassDescription)

- ::layout (layout to transition to when subpass starts)

renderpass

RADEDN

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS & RENDERPASSES

= Common problems:
4. |ISVs misunderstand how

Render subpass” |mage

Specified at renderpass create time: (VkAttachmentDescription)

- .zinitialLlayout (layout of the image when renderpass begins)
- ::finalLlayout (layout to transition to when renderpass ends)

Renderpass image transitions

AMDZCU wmav2016

transition

typedef struct VkEAttachmentDe
Tr]"....‘-&tt achmentDescriptionFl:

VEAL t
Vkhttac 11[1'—111:
VkhttachmentI

11’11[1'—111: tor=0p

flﬂdl;d}'ut

' ”LhttathHHtIc_LllptllM,

subpass renderpass

RADEDN

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS & RENDERPASSES

= Common problems:
4. |ISVs misunderstand how

{
- flags;
.ullnHElndP'lnt pipelineBindPoint;
inputAttachmentCo
nIn p u tf—kt t..a C h i

uint32 t
const VkAttachmentReference*

u1nt3u T
st ”]nhhtt:,u l’mu—rltl:'n—fn—]_'—m*"
velAttachmen

nt32 t*
escription;

typedef struct VEATta
uint32

Renderpass image transitions

AMDZCU wmav2016

htt.:ll hlLl'— 1ts;

transition .

Specified for each subpass: (VkAttachmentReference)

- ::layout (layout to transition to when subpass starts)

subpass renderpass

RADEDN

TECHNOLOCGIES GROUP

VULKAN

PROBLEMATIC AREAS: GPU-SIDE SYNCHRONIZATION

= Uber-general 's GPU-side execution rules:
1. run independently of each other.
2. When submitted to A, execute in the specified order
3. Unless order is enforced by / /
1. Submitted may be executed in parallel
2. Submitted may be executed out-of-order.
" The following are available:
— (intra- synchronization)
- NEE synchronization)
— (blocks thread until submitted job chunk<s> finish<es> running)

AMDZCU wmav2016 RADEON

DDDDDDDDDDDDDDDDD

VULKAN

PROBLEMATIC AREAS: GPU-SIDE SYNCHRONIZATION

= Problem:

= Solution: =—— ——
— Avoid at all cost! f :
— Remember that:

1. Events can be reset CPU- and GPU-side
2. Fences can be reset CPU-side

3. Semaphores automatically reset after being successfully waited upon.

— If more feasible, bake per-swapchain image set of sync objects in advance

AMDZU wmav2016

TECHNOLOCGIES GROUP

ANY QU

THANK YOU

