

2 GDC 2016

STEPHAN HODES
DAN BAKER

DAVE OLDCORN

GDC2016: RIGHT ON QUEUE

3 GDC 2016

80% OF THE PERFORMANCE COMES FROM UNDERSTANDING THE HARDWARE
20% COMES FROM USING THE API EFFICIENTLY

GENERAL ADVICE

4 GDC 2016

GDC 2016

 Direct3D 12 is designed for low CPU overhead

 Use multithreaded command list recording

 Avoid creation/destruction of heaps at runtime

 Avoid CPU/GPU synchronization points

DIRECT3D 12 CPU PERFORMANCE

5 GDC 2016

GDC 2016

 Direct3D 11 drivers have been optimized over the past 8 years

 Initial DirectX 12 ports tend to be significantly slower than DirectX 11
‒Redesign Engine to take full advantage of DirectX 12

‒Async Queues help to beat DirectX 11 performance

Agenda:
‒General Performance advice

‒Descriptor sets

‒Multiple asynchronous queues

‒Understanding Barriers

‒Memory management best practices

DIRECT3D 12 GPU PERFORMANCE

6 GDC 2016

GDC 2016

 Hardware hasn’t changed – Direct3D 11 advice still applies
‒Current AMD hardware in a nutshell:

‒ Several Compute Units (CU)
‒ 64 on FuryX

‒ 4 SIMD per CU

‒ Max. 10 wave fronts in flight per SIMD

‒ 64 threads per wave front

‒High VGPR count can limit # wave fronts
‒Use CodeXL: http://gpuopen.com/gaming-product/amd-codexl-analyzercli/

GCN IN A NUTSHELL

Branch & Message
Unit Scalar Unit

Vector Units
(4x SIMD-16)

Vector Registers
(4x 64KB)

Texture Filter Units
(4)

Local Data Share
(64KB)

L1 Cache
(16KB)

Scheduler

Texture Fetch Load /
Store Units (16)

Scalar Registers
(4KB)

http://gpuopen.com/gaming-product/amd-codexl-analyzercli/

7 GDC 2016

GDC 2016

Most performance advice still applies

 Cull: Don’t send unnecessary work to the GPU
‒Consider compute triangle filtering

‒Go see: Graham Wihlidal on “Optimizing the
Graphics Pipeline With Compute” on Friday

 Sort: Avoid unnecessary overhead
‒Sort draws by pipeline (and within pipeline by PS used)

‒Render front to back

 Batch, batch, batch (sorry guys)

‒small draw calls don’t saturate the GPU

DIRECTX12 PERFORMANCE ADVICE

http://gpuopen.com/gaming-product/geometryfx/

General

http://gpuopen.com/gaming-product/geometryfx/

9 GDC 2016

GDC 2016

Add In-Engine performance counters

 D3D12_QUERY_TYPE_TIMESTAMP
‒Don‘t stall retrieving the results

 D3D12_QUERY_DATA_PIPELINE_STATISTICS

‒VSInvocations / IAVertices : Vertex Cache Efficiency
http://gpuopen.com/gaming-product/tootle/

‒CPrimitives / IAPrimitives: Cull rate
http://gpuopen.com/gaming-product/geometryfx

‒PSInvocations / RT resolution: Overdraw

‒PSInvocations / CPrimitives: Geometry bound?
‒ Keep in mind that depth only rendering doesn’t use PS

‒ Depth test reduces PSInvocations

DIRECT3D 12 PERFORMANCE ADVICE - PROFILING

typedef struct
D3D12_QUERY_DATA_PIPELINE_STATISTICS

{

UINT64 IAVertices;

UINT64 IAPrimitives;

UINT64 VSInvocations;

UINT64 GSInvocations;

UINT64 GSPrimitives;

UINT64 CInvocations;

UINT64 CPrimitives;

UINT64 PSInvocations;

UINT64 HSInvocations;

UINT64 DSInvocations;

UINT64 CSInvocations;

} D3D12_QUERY_DATA_PIPELINE_STATISTICS;

http://gpuopen.com/gaming-product/tootle/
http://gpuopen.com/gaming-product/geometryfx/

10 GDC 2016

DESCRIPTOR SETS

11 GDC 2016

GDC 2016

 Root signature:
‒Maximum size: 64 DWORD

‒Can contain
‒Data (takes up a lot of space!)

‒Descriptors (2 DWORD)

‒Pointer to Descriptor Table

‒Keep a single Descriptor Heap
‒Use as Ringbuffer

‒Use static samplers
‒Maximum of 2032

‒Do not count to the 64 DWORD limit

DESCRIPTOR SETS Root Signature
64 DWORD max

Const

SRV

CBV

…

Memory

Descriptor Table

Descriptor Heap

CBV

CBV

12 GDC 2016

GDC 2016

 Only put small, heavily used
constants which change per draw
directly into the root signature

 Split Descriptor Tables by
frequency of update
‒Put most volatile elements first

 Use D3D12_SHADER_VISIBILITY flag
‒Not a mask

‒Duplicate entries to set exact visibility

DESCRIPTOR SETS Root Signature
64 DWORD max

Const

Per Draw CBV
(PS)

Per Draw CBV
(VS)

…

Memory

Descriptor Heap

CBV

SRV

Per Frame CBV
(PS)

Per Frame CBV
(VS)

Static CBV (All)

Per Material DT
(PS)

Per Mesh CBV
(VS)

Per Mesh CBV
(PS)

…

13 GDC 2016

GDC 2016

 Root copied to SGPR on launch
‒Layout defined at compile time

‒Only what’s required for each shader
stage

DESCRIPTOR SETS Root Signature
(VS)

Const

Per Draw CBV

Descriptor Heap

CBV

SRV

Per Frame CBV
(PS)

Per Frame CBV

Static CBV

Per Material DT
(PS)

Per Mesh CBV

Per Mesh CBV
(PS)

…
Root Signature

(PS)

Const

Per Draw CBV

14 GDC 2016

GDC 2016

 Root copied to SGPR on launch
‒Layout defined at compile time

‒Only what’s required for each shader
stage

‒Too many SGPR ->
Root Signature will spill into local
memory

 Most frequently changed entries
first

 Avoid spilling of Descriptor Tables!

DESCRIPTOR SETS Root Signature
(VS)

Const

Per Draw CBV

Descriptor Heap

CBV

SRV

Spill Table

Per Frame CBV

Static CBV

Per Mesh CBV

… multiple
entries

…
Root Signature

(PS)

Const

Per Draw CBV

Spill Table

CBV

SRV

Descriptor
Table

15 GDC 2016

D3D12 – ADDITIONAL PERFORMANCE UNLEASHED

ASYNC QUEUES

16 GDC 2016

GDC 2016

Graphics
 Copy queue:

‒Used to copy data

‒Optimized for PCIe transfers

‒Does not steal shader resources!

 Compute queue:
‒Use for copying local/local

‒Use for compute tasks that can run
async with graphics

 Graphics queue
‒Can do everything

‒Draws are usually the biggest workload

QUEUE TYPES

Compute

Copy

17 GDC 2016

GDC 2016

 Async queue usage can gain extra performance “for free”
‒Helps you beat DirectX 11 performance

 Resources are shared
‒Schedule workloads with different bottlenecks together

‒Shadows are usually limited by geometry throughput

‒Compute is usually bound by fetches, rarely ALU limited
‒ Use LDS to optimize memory efficiency

‒Async compute will affect performance of the graphics queue
‒Keep this in mind when profiling – keep a synchronous path in your engine

QUEUE TYPES

18 GDC 2016

GDC 2016

 Implementation advice
‒Build a job based renderer

‒This will help with barriers, too!

‒Manually specify which tasks should run in parallel

 Jobs should not be too small
‒Keep number of fences/frame in single digit range

‒Each signal stalls the frontend and flushes the pipeline

ASYNC QUEUE USAGE

19 GDC 2016

ASYNC COMPUTE IN ASHES

20 GDC 2016

GDC 2016

WHERE OUR RENDERING GOES

Render time

Unit Shade

Terrain Shade

Rasterize

Lighting/Shadow Setup

Post Process

21 GDC 2016

GDC 2016

FRAME OBSERVATIONS

 Lighting and most Shadow work is compute shader

 Post Process is also a compute shader

 What percent of frame is possible to put in a compute queue

22 GDC 2016

GDC 2016

WHERE OUR RENDERING GOES

Render time

Unit Shade

Terrain Shade

Rasterize

Lighting/Shadow Setup

Post Process

23 GDC 2016

SHADOW MAP

Terrain projected shadows

Simple tech

But wide Gaussian blur to prevent aliasing

Can take 2ms – but, can be a frame late

Could blur while frame is rendering

24 GDC 2016

POST PROCESS

3 part post

Simple Gaussian blur (narrow, 5x5)

Complex glare effect (large, screen sized non symmetric lens effects)

Color curve – ACES

Happens and end of frame, nothing to overlap with
‒Or is there?

25 GDC 2016

FRAME OVERLAP

Overlap the post of one frame with the beginning of the next frame

Post of Frame
1

Rendering of Frame 1 Rendering of Frame 2 Rendering of Frame 3

Post of Frame
2

Graphics Queue

Compute Queue

26 GDC 2016

WITHOUT INTRODUCING TOO MUCH LATENCY

Overlapping frames could be complex in engine

Engine queues up entire frame at time, no concept of previous frame
during rendering

Turns out we can have Direct3D 12 overlap frames for us

27 GDC 2016

BASIC IDEA

Set number of queueable frames to 3 over 2

Create a separate present queue from graphics queue

At the end of the rendering, instead of issuing present – issue a
compute task and signal the post to render

When post is completed – signals an alternate graphics queue to do
the actual present

28 GDC 2016

FRAME OVERLAP

Post of Frame
1

Rendering of Frame 1 Rendering of Frame 2 Rendering of Frame 3

Post of Frame
2

Graphics Queue

Compute Queue

Present Queue

Present Present

29 GDC 2016

D3D12 SCHEDULER

Will take care of inserting command stream

But…
‒No preemption on most cards

Thus, break apart frame to have multiple submits, trying to keep
command buffers in the 1-2ms range

Windows can then insert present at the boundary

End up with only about ½ to 1/3 extra latency

30 GDC 2016

WHAT OUR FRAME LOOKS LIKE IN GPUVIEW

31 GDC 2016

PERFORMANCE INCREASE ~15%

0

10

20

30

40

50

60

70

80

Fury X, 1080p FuryX, 2160p 390X, 1080p 390X,2160p

Async On

Async Off

32 GDC 2016

RESOURCE MANAGEMENT

33 GDC 2016

GDC 2016

 OS component handles
residency
‒(on each command buffer)

 Memory filled over time, mostly
straight into video

 Eventually overflows

 Bumped to system memory

DIRECT3D 11 MEMORY MANAGEMENT

Video
Memory

System (PCIE)
Memory

Rendertarget

Rendertarget

Depth Buffer

Textures

Dynamic Buffers

Static Buffers

Textures

Textures

34 GDC 2016

GDC 2016

 Priority system under the hood
‒RT or DS or UAV unlikely to move

‒i.e. high bandwidth read write
surface

 Still a chance of something
important moving

 … nobody who noticed it
seemed to like it very much!

DIRECT3D 11 MEMORY MANAGEMENT

Video
Memory

System (PCIE)
Memory

Rendertarget

Rendertarget

Depth Buffer

Textures

Dynamic Buffers

Static Buffers

Textures

Textures

Static Buffers

35 GDC 2016

GDC 2016

 Tells the app where the limit is
‒The app knows what resources are important better than the OS/driver

 You can see that it’s about to go wrong
‒Intervene!

‒Use lower resolution textures, drop higher mips, change formats to BC1

‒Move less demanding resources to system memory

‒Or don’t.
‒It will still migrate as a backup plan

‒ Probably works out OK for small oversubscriptions, 5-10% or so

‒ Will probably be a pretty awful user experience if it’s 20% plus

‒ Much more likely to see stuttering and inconsistent framerates

WHAT WDDM2 DOES:

36 GDC 2016

GDC 2016

 You can say “I really need this much”

IDXGIAdapter3::SetVideoMemoryReservation

 OS will tell you how much you can reserve in QueryVideoMemory:
‒If you’re the foreground app, it starts at about half of VRAM on an idle system

‒If it’s less, it probably means another heavyweight app is already running.
‒Might it be wise to pop up dialog claiming other apps need to be closed?

RESERVATION

37 GDC 2016

GDC 2016

 Memory exhaustion is a min spec issue

 You need to know roughly what memory you need
‒Track this during development

‒Don’t allow design / art to surprise you!

 Set a hard cap on options for 1GB, 2GB, 3GB etc, boards
‒Don’t allow apps to pick crazy settings on low-memory boards

‒You deserve everything you get if you allow 4K on a 1GB board

 Not a total solution because of other apps in the system
‒But combined with the reservation, you should have enough control

‒ More than you did in 11, frankly

MINIMUM SPECS AND USER OPTIONS

38 GDC 2016

GDC 2016

 MakeResident is synchronous
‒Blocks until allocation is available

 Batch them up

 Must move it off render thread
‒Paging operations will interleave

with your rendering reasonably
gracefully

 Need to do it ahead of use
‒Otherwise you’re going to stutter

MAKERESIDENT

Filling command list

MakeResident

Residency/Render
on same thread

Pack Residency
into one call

Use multiple
threads

39 GDC 2016

GDC 2016

 Predict further ahead of time what might be used now and later

 Run a couple of frames ahead of render thread
‒More buffering == less stuttering

‒BUT pumps latency into the system

RUN-AHEAD STRATEGIES

Residency

Render

40 GDC 2016

GDC 2016

 Don’t actually use residency at all!

 Preload resources you might use to system memory
‒Don’t even have to move them immediately

‒On use, copy into local then rewrite descriptors or remap pages

‒Reverse operation and evict local copy when you need to cut memory usage

RUN-AHEAD STRATEGIES

Texture
Descriptor

Resource

System
Memory

Heap

Video
Memory
Heap

Resource

Copy (using copy queue, PCIE transfer)

41 GDC 2016

GDC 2016

 Big challenge for VR apps
‒Long latency solutions obviously unworkable

‒Will have to use system memory judiciously and have good look-ahead in the
streaming

RUN-AHEAD STRATEGIES

45 GDC 2016

HOW TO AVOID SHOOTING YOURSELF IN THE FOOT
(A N D O C C A S I O N A L L Y I N T H E F A C E)

BARRIERS

46 GDC 2016

GDC 2016

 What is a barrier?

Synchronisation
ensure strict and correct ordering of work

Visibility
ensure previously written data is visible to target units

Format conversion
ensure data is in a format compatible with the target units

BARRIERS

47 GDC 2016

GDC 2016

 Caused because of depth of GPU pipeline
‒Example: UAV RAW/WAW barrier

‒Avoiding shader waves overlapping in execution

SYNCHRONISATION

Timeline

Waves in
pixel shader

Each block is one wave

Colours indicate waves belonging
to different draw calls

Draw call boundaries

Note overlap of draw calls simultaneously executing

48 GDC 2016

GDC 2016

 Assume draw 3 depends on draw 1
‒What does a one-piece barrier do?

SYNCHRONISATION BARRIER

Timeline

Barrier after draw 1

Cost of wait

49 GDC 2016

GDC 2016

 A one-piece UAV barrier is saying:
“I have just finished with a UAV, make it ready to use again right now.”

‒The driver inserts a signal, and then waits on it; guaranteed no overlap of work

SYNCHRONISATION BARRIER

Timeline

Barrier after draw 2

Cost of wait

50 GDC 2016

GDC 2016

 Assume draw 3 AND draw 2 depend on different resources written in draw 1
‒What do two individual barriers do?

“I have just finished with a UAV, make it ready to use again right now.”

SYNCHRONISATION SINGLE BARRIER

Timeline

Barrier 1-2 Barrier “1-3”

Cost of wait

51 GDC 2016

GDC 2016

 Putting both barriers in the same barrier call makes them both happen
at once

SYNCHRONISATION MULTIPLE BARRIER

Timeline

Barrier 1-2 AND 1-3

Cost of wait

52 GDC 2016

GDC 2016

 Split barrier between draw 1 and draw 3
‒“Done” after draw 1, “Make ready” before draw 3

‒Now draw 2 is unaffected, and 3 only has to wait for 1 to finish

SYNCHRONISATION SPLIT BARRIER

Timeline

Cost of wait

53 GDC 2016

GDC 2016

 Split barriers reduce synchronisation
‒If there is other work between end of last use and start of new use

 Multiple simultaneous barriers can also reduce synchronisation
‒Gets all the barriers out of the way in one go

SYNCHRONISATION, SUMMARY

54 GDC 2016

GDC 2016

 Many small L1 “caches”

 Big L2 cache
‒connected mostly to

shader core

VISIBILITY

L2
Memory

Video
DRAM

and
PCIE bus)

DMA engines

Texture
Units

Depth

Colour
Buffer

Command
processor

Shader
control L1

L1

L1

L1

55 GDC 2016

GDC 2016

 UAV of buffer ->
SHADER_RESOURCE |
CONSTANT_BUFFER
‒Flushes Texture L1 to L2

‒Flushes shader L1

‒… that’s it

VISIBILITY – SIMPLE BARRIER

L2
Memory

Video
DRAM

and
PCIE bus)

DMA engines

Texture
Units

Depth

Colour
Buffer

Command
processor

Shader
control L1

L1

L1

L1

56 GDC 2016

GDC 2016

 RENDER_TARGET ->
COMMON
‒Flushes Colour L1

‒Flushes maybe all the L1s

‒Flushes the L2

 More expensive
‒Takes longer

‒More memory traffic

VISIBILITY – TRANSITION TO THE COMMON STATE

L2
Memory

Video
DRAM

and
PCIE bus)

DMA engines

Texture
Units

Depth

Colour
Buffer

Command
processor

Shader
control L1

L1

L1

L1

57 GDC 2016

GDC 2016

 Multiple barriers in a single call reduce the cost of visibility
‒Flushes union of all flushes

‒Consider previous cases shown
‒Add extra RT->SRV cases cost nothing over RT->COMMON – free!

 Split barrier can also reduce cost of visibility
‒Note that this implies effort spent to watch and cancel out barriers

VISIBILITY

58 GDC 2016

GDC 2016

 RT and DS surfaces perform far better when compressed
‒Can be factor of 2 or more

 Two different kinds of compression on latest hardware
‒Full must be decompressed to be read other than RT or DS

‒Part will also work as SRV

 If you need decompressions, you have to take the hit somewhere
‒But it’s not hard to decompress when you don’t really need to

‒Essential to avoid these

DECOMPRESSION

61 GDC 2016

GDC 2016

 Barriers that don’t contain decompressions take ‘some μs’

 Barrier GPU cost is (mostly) measurable with timestamps
‒Rare that it should be more than a few %

‒Exceptions include decompresses of huge AA surfaces

 Shouldn’t need much more than two barriers per written surface

BARRIERS, OPTIMISATION

62 GDC 2016

GDC 2016

 RT->SRV->Copy_source->SRV->RT
‒Don’t forget you can combine states by OR-ing state flags together

‒Never do read to read barriers

‒Put it into the right state first time

 “Sometimes I copy from this, so I’ll always do RT->SRV|Copy”
‒RT->SR may be very cheap, RT->SRV|Copy may be very expensive

‒Put it into the right state first time

BAD PATTERNS

63 GDC 2016

GDC 2016

 If you do these your engine is not a Direct3D 12 engine
‒Must think ahead, must think at a higher level

 “I don’t know what state this object is in next, so I’ll transition
everything to COMMON at the end of every list”
‒The cost of this is enormous

‒Forces all surfaces to decompress

‒Most command lists effectively wait for idle before starting

 Only considering barriers just at use, and / or in an inner loop
‒Prevents combining barriers

WORSE PATTERNS – SYMPTOMS OF WORKING TOO LOCALLY

64 GDC 2016

GDC 2016

void UploadTextures()

{

for(auto resource : resources)

{

pD3D12CmdList->Barrier(resource, Copy);

pD3D12CmdList->CopyTexture(src, dest);

pD3D12CmdList->Barrier(resource, SR);

}

}

THE WORST POSSIBLE EXAMPLE

TWO barriers per resource upload

Each is probably serialising at the GPU

65 GDC 2016

GDC 2016

void UploadTextures()

{

BarrierList list;

for(auto resource : resources)

AddBarrier(list, resource, Copy)

pD3D12CmdList->Barrier(list);

list->clear();

for(auto resource : resources)

pD3D12CmdList-> CopyTexture(src, dest);

for(auto resource : resources)

AddBarrier(list, resource, SR)

pD3D12CmdList->Barrier(list);

}

THIS IS BETTER

ONE barrier call with ALL resources

One more barrier to finish off

Now do the uploads

66 GDC 2016

GDC 2016

 Yeah, this is a bit hard

 Surfaces written every frame are the main problem
‒Written surface corruption? Barrier missing.

‒Two barriers per surface per frame is the target
‒(and fewer barrier calls).

 Use the tools

BARRIER SUMMARY

67 GDC 2016

Our thank you is a free video card for someone!

68 GDC 2016

GDC 2016

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or
product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD
reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

©2016 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, [insert all other AMD trademarks used in the material here per AMD’s Checklist for Trademark Attribution] and combinations thereof are trademarks of
Advanced Micro Devices, Inc. Microsoft, Windows, DirectX11 and DirectX12 are registered trademarks of Microsoft Corporation in the United States and/or other jurisdictions. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

