
Advanced Techniques 
and Optimization of HDR
VDR Color Pipelines

Timothy Lottes [AMD]



Contents

● Part 1: Variable Dynamic Range (VDR)

● Part 2: Tonemapping for VDR

● Part 3: Transfer Functions and Dithering

● Goal: Better quality for LDR through HDR



Graphics Pipeline Application

● Also applicable to LDR (reduced banding)

● Ideal for HDR on OLED VR HMDs

Grain and 
Conversion via 
Display Transfer 

Function

Linear Color HDR
Render Output

After 
Auto-Exposure 

Adjustment

Tonemap Linear 
Color HDR To 

Linear In Range 
of Display

Talk Details Improving This Part of the Pipeline



Part 1 – VDR
Variable Dynamic Range

Dynamic Range is a function of 
display capability and viewing 
environment



Terms

● ANSI Contrast = Measure this

● Contrast Ratio = Dynamic Range 

● APL = Average Picture Level

● Nits = Measure of Luminance (cd/m^2)

● Stop = A doubling of Luminance



Display Capability

● Understanding display capability through 
measured examples

● From past through current display



Desktop CRT Example

● 18 year old CRT

● 151 nits @ 50% APL

● CRT contrast varies based on content

265:1 430:1 1800:1



HD CRT TV Example

● 720p/1080i “HD-ready” TV

● 302 nits @ 50% APL

● CRT contrast varies based on content

158:1 2500:1 30000:1



Average PC LCD

● Post CRTs with LCDs

● ~300 nits (with white ~6500 K)

● sRGB/Rec.709 gamut

● ~1000:1 ANSI contrast (~10 stops)

● More uniform contrast (no CRT blooming)

● But often higher black levels



Plasma Example

● Plasma TV from 2007

● Large HDTV

● 172 nits 

● Around sRGB/Rec.709 gamut

● 3542:1 ANSI contrast (11.8 stops)



High-End Gaming LCD Example

● LCD from 2013

● 386 nits (white at 6364 K)

● 257 nits in low-persistence mode

● sRGB/Rec.709 gamut

● 5214:1 ANSI contrast (12.3 stops)

● 4602:1 in low-persistence mode



LED LCD HDR TV Example

● 419 nits (with 14473 K white)

● No global dimming at 100% APL

● 104% DCI-P3 gamut

● 2.2% ambient, 3.1% specular reflection

● 3844:1 ANSI contrast ratio (11.9 stops)



LED LCD and Local Dimming

● Backlight = array of LEDs (called zones)

● Joint scaling of {black level, peak 
brightness} non-uniformly across screen

● +1 stop peak results in +1 stop in black level

● Spatially limited to gradual changes

● Otherwise small bright pixels cause halos



OLED | CRT LCD
LCD With LED 
Local Dimming



OLED HDR TV Example

● 433 nits @ 25% APL (11695 K)

● 232 nits @ 50% APL, 141 nits @ 100% APL

● 93% DCI-P3 gamut

● 1.2% ambient, 2.1% specular reflection

● ANSI contrast limited by reflection

● And panel uniformity



APL and Global Dimming

● Large TVs are often power limited

● Screen dimmed to stay in power limit

● Example OLED

● 452 nits when not dimming [X]

● 151 nits on full white screen [Y]

● LG dimming starts between 25-50% APL

● Want in-game auto-exposure under 25% APL



X Y



Takeaways

● Consumer space filled with displays of 
varying amounts of Dynamic Range

● Displays with High Dynamic Range have 
existed for some time

● Going brighter limited by power

● Most advantages from better darks



Viewing Environment

● Viewing environment has a larger 
magnitude of effects on the ability to 
display HDR, than the range of display 
capabilities



Actual Black Level

Sum of light contribution from

1. Display’s native black

2. Screen reflection



Screen Reflection 

● Room lighting reflecting off screen

● Places practical limit on contrast ratio

● Example display screen reflectance

● OLED: 1.2% ambient, 2.1% specular

● LCD: 2.2% ambient, 3.1% specular

● Older LCD: 6.5% ambient, 8.5% specular



Example Measured Rooms

● Different room ambient levels

● Easily 15 stop difference in contrast limit

● Sampled 18% reflector (grey card)

● Contrast limit as limited by reflection



Display Facing Covered Patio 

● 1000 nit ambient

● 400 nit screen contrast limit

● 1% reflectance = 5.3 stops

● 2% reflectance = 4.3 stops

● 4% reflectance = 3.3 stops

● 8% reflectance = 2.3 stops



Display Facing Closed Blinds

● 200 nit ambient

● 400 nit screen contrast limit

● 1% reflectance = 7.6 stops

● 2% reflectance = 6.6 stops

● 4% reflectance = 5.6 stops

● 8% reflectance = 4.6 stops



Display Facing Closed Curtain

● 5 nit ambient

● 400 nit screen contrast limit

● 1% reflectance = 13.0 stops

● 2% reflectance = 12.0 stops

● 4% reflectance = 11.0 stops

● 8% reflectance = 10.0 stops



In Next Room With No Windows

● 0.25 nit ambient

● 400 nit screen contrast limit

● 1% reflectance = 17.3 stops

● 2% reflectance = 16.3 stops

● 4% reflectance = 15.3 stops

● 8% reflectance = 14.3 stops



100 nit Display Lighting Room

● 0.05 nit ambient

● 400 nit contrast limit

● 1% reflectance = 19.6 stops

● 2% reflectance = 18.6 stops

● 4% reflectance = 17.6 stops

● 8% reflectance = 16.6 stops



Takeaways

● Player views game in a Variable Dynamic 
Range environment

● Bright room / day = low dynamic range

● Dark room / night = higher dynamic range

● HDR ready = 

good ANSI contrast display + dark room



Part 2 – Tonemapping

Adjusting game display settings 
and optimizing tonemapping for 
VDR



Eye Adaption to Room Ambient

Display Peak

Video Image Mid-Level Near 
Comfortable Mid-Level Feels Right
Venture Too Far Away
And Video Image Seems
Too Dark or Too Bright

Display Black + Reflection

Eye Adapts to 
Room Ambient 
Level

Establishing
Comfortable
Mid-Level



Dark Ambient Enables HDR

Display Peak

Lower Mid-Level
Enables More Contrast
Between Mid and Highlights
Lower Reflection Drops Black

Display Black + Reflection

Darker Room
Enables Lower 
Mid-Level



Tonemapping Goals

● Adaption viewing condition for VDR

● Want believably real images

● Effects can be subtle (little details)

● Want {saturation, contrast, hue} changes 
fully decoupled from changes in tonality

● Same content with different mid-level 
mapping should look consistent



Tonemapping Goals Part 2

● Built in contrast & saturation control

● Existing in-game auto-exposure

● Driving input mid-level

● Stable settings

● No retune as output mid-level changes



Conventions for VDR

● Traditional display calibration/viewing 
convention is to drop peak brightness to 
comfortable level

● Instead keep peak for HDR and drop in-
game mid-level to comfortable level

● Also drop in-game GUI white level



Transfer Functions
Suggest
Repurposing Existing
In-Game Video 
Controls



Brightness or Contrast Knob

● Sometimes traditionally a power function

● Often done after tonemapping, 
simultaneously changing {mid-level mapping, 
constrast, and saturation} 

● Suggest using Knob to drive mid-level 
mapping for tonemapping

● Adjusting visible dynamic range



Tonemapper Mapping

Input

Output

Display Peak

Peak Value in Virtual Scene

Mid-Level in the Virtual Scene

Brightness Knob Sets This

Output Dynamic Range Above Mid-Level

Display Black

Mid-Level Output



Building a Tonemapper

● Showing how to construct and control a 
high quality tonemapper working from 
base mathematical constructs



Building a Tonemapper: Part 1

● y=pow(x,a);

● Contrast

● Sets toe of curve
Toe



Building a Tonemapper: Part 2.0

● y=x/(x+1);

● Highlight compression

● Sets shoulder of curve

● Smoothly limits output

Shoulder



Building a Tonemapper: Part 2.1

● y=x/(x+c);

● Add ‘c’ term

● Speed of compression



Building a Tonemapper: Part 2.2

● y=x/(x*b+c);

● Add ‘b’ term

● Sets clipping point

● Sets peak of input 
dynamic range



Building a Tonemapper: Part 2.3

● y=x/(pow(x,d)*b+c);

● Add ‘d’ power

● Adjusts compression 
speed in the shoulder 
region of the curve 



Building a Tonemapper: Part 3.0

● z=pow(x,a);

● y=z/(pow(z,d)*b+c);

● Combine both parts to 
build tonemapper



Controlling The Tonemapper

● z=pow(x,contrast);

● y=z/(pow(z,shoulder)*b+c);

● {contrast,shoulder} shapes curve

● {b,c} anchors curve



Mid-Level Anchor to Set {b,c}

● Use 18% grey mid-level as anchor point

Output Mid-Level

Input Mid-Level



(* Mathematica source for solving for {b,c} *)

tonemap[x_]:=(x^a) / (((x^a)^d) * b + c)

Solve[{tonemap[midIn] == midOut,

tonemap[hdrMax] == 1}, {b,c}, Reals]

(* output *)

b -> (-midIn^a + hdrMax^a * midOut) /

(((hdrMax^a)^d – (midIn^a)^d) * midOut)

c -> ((hdrMax^a)^d * midIn^a – hdrMax^a * (midIn^a)^d * midOut) / 

(((hdrMax^a)^d – (midIn^a)^d) * midOut)



Apply to a Real HDR Scene

● HDR image built from 16 exposures

● Challenging content for tonemapper

● Shot includes the sun

● Using 10 stops of data above 18% mid-level 
for base exposure in comparison shots



Raw Photos, No Tonemapping

16 Stops of a Real HDR Scene



Tonemapped
(No Clipping)

Raw Data
(Clipped)

Clipped Highlights



Tonemapped
(-3 Stop Mid-Level)

Raw Data
(-3 Stop Mid-Level)

Clipped Highlights



Eye Adaption

● 1st image and 2nd image of prior series

● Represents a practical difference between 
“lights off” and “lights on” viewing conditions 
for VDR when display has good ANSI Contrast

● Next side by side but with larger contrast 
setting in tonemapper



Higher Contrast
(Base Mid-Level)

Higher Contrast
(-3 Stop Mid-Level)



Knob Differences

● Using mid-level mapping to adjust 
brightness pre-tonemapping keeps 
contrast and saturation consistent 

● Post-tonemapping gamma adjustment 
increases contrast+saturation when 
darkening, and decreases contrast+saturation
when lightening mid-level (want to avoid this)



Brightness Knob 
Pre-Tonemapping

Via Mid-Level
(-3 Stop Mid-Level)

Brightness Knob
Post-Tonemapping

Via Gamma
(-3 Stop Mid-Level)

Saturation Changes

Contrast Changes



Separation of Max and RGB Ratio

● Tonemapping is applied to max of {r,g,b}

● peak = max3(rgb); ratio = rgb/peak;

● peak = tonemap(peak); output = peak*ratio;

● Color processing is done separately

● (adjusting ratio done separately)

● Has advantages in over-exposure cases



Tonemapping
Max RGB

(Overexposure)

Tonemapping
RGB Channels 

Separately
(Overexposure)

Desaturation

Distorted Color

Same 
Tonemapping
Parameters



Processing of Color Ratio

● Channel Crosstalk

● Works similar in concept to real-world film

● Move colors towards white as they 
overexpose maintaining perception of 
brightness



Path to White

● Path colors take to white is important

● Direct path desaturates fast

● Indirect path which moves brighter 
channels faster maintains more 
saturation

● Apply crosstalk non-linearly



Tonemapping RGB Separately
With no added Crosstalk

(Saturated Colors Clamp to Pure Hues)
(Desaturated Colors Desaturate More)

Both show nonlinear plot of highlights
(exp2(rgb*16384)-1)/(exp2(16384)-1)

processed through tonemapper

Tonemap Max RGB, with 
“Direct Path to White”

(Desaturates)



Tonemapping RGB Separately
With no added Crosstalk

(Saturated Colors Clamp to Pure Hues)
(Desaturated Colors Desaturate More)

Tonemap Max RGB, with 
“Indirect Path to White”
(Maintains Saturation)



Tonemapping RGB Separately
With no added Crosstalk

(Saturated Colors Clamp to Pure Hues)
(Desaturated Colors Desaturate More)

Can use same control to also increase 
Saturation globally

(Important when increasing Contrast 
globally using Tonemapper)



// improved crosstalk – maintaining saturation

float tonemappedMaximum; // max(color.r, color.g, color.b)

float3 ratio; // color / tonemappedMaximum

float crosstalk; // controls amount of channel crosstalk

float saturation; // full tonal range saturation control

float crossSaturation; // crosstalk saturation

// wrap crosstalk in transform

ratio = pow(ratio, saturation / crossSaturation);

ratio = lerp(ratio, white, pow(tonemappedMaximum, crosstalk));

ratio = pow(ratio, crossSaturation);

// final color

color = ratio * tonemappedMaximum;



Tonemapping Optimization

● If tonemapping is applied in texture or 
bandwidth bound situation, or used to 
build LUTs dynamically at run-time

● Will be using shader based implementation

● Most parameters can be factored out to 
constants changed per frame



Optimizing for LUT (3D Lookup)

● If tonemapping applied in an ALU limited 
situation or if doing {color grading, 
tonemapping, final transfer function} 
with LUT simultaneously 

● Often a 3D texture will be used

● Large dynamic range is a challenge



Looking at LUT Error Plots

● For the first plots

● Using x/(x+1) as proxy for tonemapper

● 8-bit output for sRGB

● Using 6 stops of range above 1.0

● 32x32x32 LUT

● But showing one dimension in the plot



First Plot = Worst Case

● Using linear input directly

● output = LUT.Sample(s, linearColor/64.0);

● Providing orientation for understanding 
the error plots



Ideal Output

LUT Output

LUT Precision
(Filled Dark Purple)

Best Case Precision
(Filled Dark Orange)

First LUT Texel

Higher Precision
(Good)

Lower Precision
(Bad)

White

Black

Log Plot of Error Focusing on 
Darks Where the Most Error Is

One 8-bit Step



This LUT Has 
Tremendous Error

Higher Precision
(Good)

Lower Precision
(Bad)

Linear Input (Worst Case)

Can See Precision Increase Around LUT Texels



2nd Plot = Wrap in Sqrt()

● output = LUT.Sample(s, 
sqrt(linearColor/64.0)).rgb;

● Pre-shaping input for better LUT texel
distribution to the signal



Improved Precision
(But Not Good Enough)

Higher Precision
(Good)

Lower Precision
(Bad)

Shape Input by Sqrt()

sRGB’s Linear Segment is a Problem



3rd Plot = Wrap by PQ()

● output = LUT.Sample(s, 
PQ(linearColor/64.0)).rgb;

● Using SMPTE ST 2084-2014’s Perceptual 
Quantizer (used for new HDR Video standard)



Greatly Improved Quality

Higher Precision
(Good)

Lower Precision
(Bad)

Shape Input by PQ()



// pq from linear

// based on implementation in aces 1.0 (see url)

// https://github.com/ampas/aces-

dev/blob/master/transforms/ctl/utilities/ACESlib.Utilities_Color.a1

.0.1.ctl

float pq(float x) { 

float m1 = 0.1593017578125;

float m2 = 78.84375;

float c1 = 0.8359375;

float c2 = 18.8515625;

float c3 = 18.6875;

float p = pow(x, m1);

return pow((c1 + c2 * p) / (1.0 + c3 * p), m2); }



4rd Plot = Wrap by Log2()

● PQ(rgb) requires 15 transcendental ops

● More than the tonemapper uses

● Want something faster, wrap by

● log2(rgb * c + 1.0) * (1.0 / log2(c + 1.0))

● Choose ‘c’ constant to reduce error



Error Plot Similar To PQ

Higher Precision
(Good)

Lower Precision
(Bad)

Shape Input by Log2()



More Complex Cases

● Showing a mix of different options

● Using tonemapper from this presentation

● 10-bit output instead of 8-bit

● Gamma 2.2 output instead of sRGB

● Unable to get 10-bit precision with 32^3



Shaper: pq(x)
Output: 10-bit for Gamma 2.2

Tonemapper Params
MidIn: 0.18
MidOut: 0.18
HdrMax: 64.0
Contrast: 1.3
Shoulder: 0.995

LUT Shows 2-3 Bits of Error 



Shaper: log2(x*exp2(20.0)+1.0)
Output: 10-bit for Gamma 2.2

Tonemapper Params
MidIn: 0.18
MidOut: 0.18
HdrMax: 64.0
Contrast: 1.3
Shoulder: 0.995



Shaper: log2(x*exp2(20.0)+1.0)
Output: 10-bit for Gamma 2.2

Tonemapper Params
MidIn: 0.18
MidOut: 0.18 / exp2(3.0)
HdrMax: 64.0
Contrast: 1.3
Shoulder: 0.995

-3 Stop Mid-Level



Shaper: log2(x*exp2(19.0)+1.0)
Output: 10-bit for Gamma 2.2

Tonemapper Params
MidIn: 0.18
MidOut: 0.18 / exp2(3.0)
HdrMax: 64.0
Contrast: 1.3
Shoulder: 0.995

Now 64^3 (Was 32^3)



LUT Error Plot Takeaways

● Various options to customize to goals

● Log2() input shaper

● Can run LUT after ALU based tonemapping
and after application of transfer function

● Could also try 32x64x32 (RxGxB) LUT

● Green more perceptually noticeable



Part 3 – Transfer 
Functions & Quantization

Techniques to get high quality 
output on any display



Quantization Goals

● Enable high quality blacks at any bit depth!

● Energy-preserving (won’t change tone/color)

● Can be applied and work for different transfer 
functions even if app can not query transfer 
function OS is using

● Can be artistically controlled to serve same 
purposes as film grain



Quantization Example

● Next slide shows an example of what is 
possible with static high quality 
quantization techniques described in this 
presentation

● Uses a high quality grain texture

● Looks even better temporally



Both Shots Are 3-Bits/Channel



Transfer Function?

● Often impossible to query or know on PC

● Useful to have user selection

● Via in-game video settings



PQ Transfer Function

● HDR TVs add Perceptual Quantizer [PQ]

● SMPTE ST 2084-2014

● Peak = absolute 10,000 nits

● Not display relative like other standards

● Displays variably tonemap content

● PQ allocates more bits to darks 



HD+HDR TV Transfer Functions

● TVs set to Game Mode and Input 
Renamed “PC”: unofficial convention for

● Reducing input latency

● Getting less random color transforms

● Drive HDR TVs like classic monitors (use 
gamma transfer function without PQ’s 
bundled tonemapping)



Transfer Functions

Rec.709

Linear

sRGB

Gamma 2.2

PQ to 400 nits (if TV didn’t tonemap)

Gamma 4.0



Transfer Functions At 3-Bits

● Showing linear nearest quantization

● At 3-bits/channel to visualize differences

● Blue line provides quantization center

● Log display (like prior slide)

● PQ shown with different display peaks (values 
near or above peak get tonemapped)



Transfer Functions

Rec.709

sRGB
Gamma 2.2

Gamma 4.0

PQ 400 nit

PQ 800 nit

PQ 1600 nit

PQ 3200 nit



Dithering At 3-Bits

● Simple energy-preserving dither

● Add constant amount of grain in linear 

● Done before transform and quantization

● Blacks corrected, peaks not (error at top)

● HDR Transfer Functions show “banding”

● Because of symmetrical (-/+) grain



Transfer Functions

Rec.709

sRGB
Gamma 2.2

Gamma 4.0

PQ 400 nit

PQ 800 nit

PQ 1600 nit

PQ 3200 nit

largest linear step
(peak used for dither)

largest linear step
extends up off screen
(a constant amount of 
grain must be sized to 

dither this step)

Linear View of 
Swatches



Peaks Not Energy Preserving

● Not correcting for lack of values above 
1.0 in this example

● Not important as bit/pixel increases

● Correcting blacks

● Important as bit/pixel increases

20 1-1 3



// simple energy-preserving dither

float3 color; // input color in linear

float3 grain; // input {-1 to 1} grain value

// constant, step size in non-linear space

float rcpStep = 1.0 / (steps – 1.0);

// constant, amount negative which still quantizes to zero

float black = 0.5 * OutputToLinear(rcpStep);

// constant, biggest linear step size * overlap

float biggest = 0.75 * (OutputToLinear(1.0 + rcpStep) – 1.0);

// add grain (3 adds, 3 mins, 3 mads)

return color + grain * min(color + black, biggest);



Grain Texture Note

● Using low-quality grain

● Simple ALU based grain in Shadertoy

● Easier to see banding problems



Transfer Functions

Rec.709

sRGB
Gamma 2.2

Gamma 4.0

PQ 400 nit

PQ 800 nit

PQ 1600 nit

PQ 3200 nit

Banding



Asymmetrical Grain Distribution

● Required with HDR Transfer Functions

● Shift so negative side gets more grains

● Shift so positive side gets higher values

● Offset and scale to maintain equal area (-/+)

+

-



Transfer Functions

Rec.709

sRGB
Gamma 2.2

Gamma 4.0

PQ 400 nit

PQ 800 nit

PQ 1600 nit

PQ 3200 nit

Asymmetrical Grain – No Banding



Now at 5-Bits

● HDR Transfer Functions

● Need higher amounts of constant grain 
because they have a larger max linear step 
size (located in towards the peak)

● PQ examples take peak step at display peak 
nits (instead of at 10,000 nit encoding peak)



Transfer Functions

Rec.709

sRGB
Gamma 2.2

Gamma 4.0

PQ 400 nit

PQ 800 nit

PQ 1600 nit

PQ 3200 nit

5-bits Per Channel



Adaptive Grain at 5-Bits

● Adapting the grain to the step size

● Requires computing step size per channel

● More GPU work

● Workaround for constant grain with PQ

● Might not be required at high bit depths



Transfer Functions

Rec.709

sRGB
Gamma 2.2

Gamma 4.0

PQ 400 nit

PQ 800 nit

PQ 1600 nit

PQ 3200 nit

Adaptive Grain

Reduces Gain Here

Has No Effect in Brights



Takeaway

● Use high quality quantization to get high 
quality output for any bit depth and 
transfer function

● Great solution to remove banding for 
traditional LDR games as well



Part 4 – Choose Your 
Own Adventure

Thanks for watching

For questions or discussion,
Timothy.Lottes@amd.com


