
GUENNADI RIGUER, SOFTWARE ARCHITECT

LIQUIDVR™ TODAY AND TOMORROW

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

Bootstrapping the industry for better VR experience

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

Complimentary to HMD SDKs

™

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

It’s all about giving developers the tools they want!

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

AMD LIQUIDVR™ FEATURES

Latest data latch

Efficient low-
latency GPU head
tracking

Direct-to-display

Delivers a seamless
plug & play VR
experience

Asynchronous
shaders

Minimizes latency
and stuttering

Affinity multi-GPU

Lower latency and
increases quality
with multiple GPUs

Content developers

HMD vendors

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Using up-to-date head tracking inputs
for VR rendering and image warp

 Post-submission data update
‒GPU pull instead of CPU push

LATEST DATA LATCH

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Data pipelined through API at frame building time

SENSOR DATA WITHOUT LATEST LATCH

GPU

CPU

Sensor to present latency

. . .

UPDATE

Sensor data update

Pipelined data update

Render frame

Engine work

Present

STORE

USE
Render frame

Engine work

Present

STORE

USE

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Render frame

 Data latched right before use

 Latch is queued through rendering API

LATEST DATA LATCH

GPU

CPU

Sensor to present latency

. . .

UPDATE

Sensor data update

Pipelined data update

 Render frame

Engine work

Present

QUEUE

USE

Engine work

Present

QUEUE

USE LATCH LATCH

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

LATE LATCH OPERATION

// Setup late latch
ALVRLateLatchConstantBufferD3D11* pLatchBuf;
m_pLvrDevEx->CreateLateLatchConstantBufferD3D11(
 sizeof(HeadData), recordCount, 0, &pLatchBuf);

// Sensor update loop
while (updateSensor)
{
 HeadData latestData;
 GetSensorHeadData(&latestData);
 pLatchBuf->Update(&latestData, 0, sizeof(HeadData));
}

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

LATE LATCH OPERATION

Data ring buffer

GPU Queue

Current
index

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

LATE LATCH OPERATION

Data ring buffer

GPU Queue

Current
index

Data update

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

LATE LATCH OPERATION

GPU Queue
…

Latch

Shader data access

…

// Queue latch of latest index
pLatchBuf->QueueLatch();
// Const buffers for shader access of latched data
ID3D11Buffer* pDataCb = pLatchBuf->GetDataD3D11();
ID3D11Buffer* pIndexCb = pLatchBuf->GetIndexD3D11();
pDxCtx->VSSetConstantBuffers(0, 1, &pIndexCb);
pDxCtx->VSSetConstantBuffers(1, 1, &pDataCb);
. . .
pDxCtx->Draw();

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

LATE LATCH OPERATION

Data ring buffer

GPU Queue
…

Latch

Shader data access

…

Current
index

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

LATE LATCH OPERATION

Data ring buffer

GPU Queue
…

Latch

Shader data access

…

Current
index

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

LATE LATCH OPERATION

Data ring buffer

GPU Queue
…

Latch

Shader data access

…

Current
index

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

LATE LATCH OPERATION

Data ring buffer

GPU Queue
…

Latch

Shader data access

…

Current
index

Latched
index

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

LATE LATCH OPERATION

Data ring buffer

Current
index

Latched
index

GPU Queue
…

Latch

Shader data access

…

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

LATE LATCH OPERATION

Data ring buffer

GPU Queue
…

Latch

Shader data access

…

Current
index

Latched
index

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

SHADER ACCESS OF LATCHED DATA

struct HeadData
{
 matrix xform;
};
cbuffer LatchIndexBuffer : register(b0)
{
 unsigned int dataIndex;
};
cbuffer LatchDataBuffer : register(b1)
{
 HeadData dataSlots[512];
};
VS_OUTPUT VSMain(VS_INPUT Input)
{
 VS_OUTPUT Output = (VS_OUTPUT)0;
 Output.Pos = mul(Input.Pos, dataSlots[dataIndex].xform);
 return Output;
}

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Explicit control of GPUs
‒Broadcast API commands to GPUs

‒Application controls GPU affinity

‒Explicit transfers and synchronization

‒Control of resource instancing

 Assign a GPU per eye for 2 GPUs

 Supports more than 2 GPUs

AFFINITY MULTI-GPU

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

AFFINITY MULTI-GPU IDEAL SCENARIO

IDEAL CASE AFFINITY MULTI-GPU

Render right eye GPU1

Engine
work

Prepare both
eyes CPU

Render left eye GPU2

Present

Render right eye

Render left eye

Render right eye

Render left eye

…

…

Present Present

Engine
work

Prepare both
eyes

Engine
work

Prepare both
eyes

Engine
work

Prepare both
eyes

C
O

P
Y

C
O

P
Y

C
O

P
Y

SINGLE GPU

Render right eye GPU

Engine
work

Prepare
right eye CPU

Prepare left
eye

Warp Render left eye Render right eye Warp Render left eye

Engine
work

Prepare
right eye

Prepare left
eye

Present Present

…

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Some inefficiencies due to:
‒Compositor work

‒Eye-independent work

 Illustrates some best practices…

MORE TYPICAL MULTI-GPU SCENARIO

Render right eye GPU1

Engine
work

Prep.
common CPU

Render left eye GPU2

Present Present

C
O

P
Y

Prep.
right

Prep.
left

Warp
Render

common

Render
common

Render right eye

Engine
work

Prep.
common

Render left eye

C
O

P
Y

Prep.
right

Prep.
left

Warp
Render

common

Render
common

Present

Warp . . .

Engine
work

. . .

. . .

Prep.
right

Prep.
left

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Must wrap device and context

 Can’t use original device and context
once wrapped

 Don’t forget to disable prior to creation
of non-affinity D3D11 device

AFFINITY MGPU BEST PRACTICES – DEVICE WRAPPING

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Avoid excessive switching between eyes

 Broadcast to both GPUs when possible

AFFINITY MGPU BEST PRACTICES – EYE SWITCHING

for (auto &obj : Scene)
{
 for (int eye = 0; eye < 2; i++)
 {
 pLvrDevEx->SetGpuRenderAffinity(1 << eye);
 pDxCtx->Map(pCb, ...);
 UpdateEyeXform(pCb, eye);
 pDxCtx->Unmap(pCb);
 DrawObject(obj, pCb);
 }
}

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Avoid excessive switching between eyes - √

 Broadcast to both GPUs when possible

AFFINITY MGPU BEST PRACTICES – EYE SWITCHING

for (int eye = 0; eye < 2; i++)
{
 pLvrDevEx->SetGpuRenderAffinity(1 << eye);
 pDxCtx->Map(pCb, ...);
 UpdateEyeXform(pCb, eye);
 pDxCtx->Unmap(pCb);
 for (auto &obj : Scene)
 {
 DrawObject(obj, pCb);
 }
}

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Avoid excessive switching between eyes - √

 Broadcast to both GPUs when possible - √

AFFINITY MGPU BEST PRACTICES – EYE SWITCHING

for (int eye = 0; eye < 2; i++)
{
 pLvrDevEx->SetGpuRenderAffinity(1 << eye);
 pDxCtx->Map(pCb, ...);
 UpdateEyeXform(pCb, eye);
 pDxCtx->Unmap(pCb);
}
pLvrDevEx->SetGpuRenderAffinity(0x3); // Broadcast to both eyes
for (auto &obj : Scene)
{
 DrawObject(obj, pCb);
}

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Minimize const buffers with eye-dependent data

 Minimize size of const buffers

 Max 64K const buffers

AFFINITY MGPU BEST PRACTICES – CONST BUFFERS

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Ordering of operations matters

AFFINITY MGPU BEST PRACTICES – WORK ORDERING

Render right eye GPU1

Engine
work

Prep.
common CPU

Render left eye GPU2

Present Present

C
O

P
Y

Prep.
right

Prep.
left

Warp
Render

common

Render
common

Present

Warp Render right eye

Engine
work

Prep.
common

Render left eye

C
O

P
Y

Prep.
right

Prep.
left

Warp
Render

common

Render
common

Engine
work

. . .

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Push eye-independent work to end of frame

 Get slave running earlier to hide copy

AFFINITY MGPU BEST PRACTICES – WORK ORDERING

Render right eye GPU1

. . .
Prep.

common CPU

Render left eye GPU2

Present Present

C
O

P
Y

Prep.
right

Prep.
left

Warp
Render

common

Render
common

Render right eye

Engine
work

Prep.
common

Render left eye

C
O

P
Y

Prep.
right

Prep.
left

Warp
Render

common

Render
common

Present

Warp . . .

Engine
work

. . .

. . .

Prep.
right

Prep.
left

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Application’s use of sync objects is more optimal

 3D engine transfers are safer choice
‒Supports partial subresource transfers

 DMA only for experts
‒Supports whole subresource transfers

AFFINITY MGPU BEST PRACTICES - TRANSFERS

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

ASYNCHRONOUS COMPUTE FOR VR

 Execute VR image processing while
rendering

 Creates superb VR experience
‒Minimizes latency

‒Eliminates judder

 Execution priority controls (QoS)

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Helps hide cost of image warp, but…

 No QoS = graphics could delay image warp

 Need knowledge and control of graphic workload

REGULAR PRIORITY COMPUTE

Warp
N-1

Render
N

Warp
N

GFX

Present

Render
N+1

Warp
N+1

Present

Compute

Render
N+2

Warp
N+2

Present Present

Render
N

Render
N+1

. . .
Render

N+2

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Favor compute vs. other workloads

 Better than draw call granularity

 Key for good asynchronous time-warp
‒Judder compensation

ASYNCHRONOUS COMPUTE QOS

AT
W

Render
N GFX

Present Present

Compute

Present Present

Render
N+1

Render
N+2

. . .
Render

N+3

AT
W

AT
W

AT
W

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Brings native HMD support to OS
‒Hide display from OS

‒Doesn’t mess up desktop

 Lots of low level controls
‒Perfect for embedded solutions

 Simplifies user experience

DIRECT-TO-DISPLAY

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Available to HMD vendors (under NDA)

 Contact us for more info…

DIRECT-TO-DISPLAY

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 API interoperability

 Synchronization

 Timeline building

 …

MORE TOOLS FOR YOUR TOOLBOX

FUTURE DEVELOPMENTS

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Improving efficiency for lower end GPUs and
mobile solutions

 Better API interoperability

 Untethered experience

 Sound integration

FUTURE DIRECTIONS

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 Extended operation for mobile systems

 Thermal event avoidance

 Part of async compute QoS solution for
guaranteed performance

POWER MANAGEMENT

CARL WAKELAND, FELLOW DESIGN ENGINEER

TRUEAUDIO NEXT

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

TRUEAUDIO NEXT
THE RIGHT NEXT STEP IN AUDIO RENDERING FOR VR

 50% of consensus reality perception comes from what
we hear.

 Studio-derived sound approximations are not reality, and
our brains know it.

 We’re ready to cross the chasm to full real-time physics-
based audio rendering.

 TrueAudio Next is a future AMD technology that allows
real-time audio to leverage the powerful resources of
GPU Compute, safely coexisting with the world’s best
graphics, with performance not possible on CPU alone.

 TrueAudio Next is not an embedded DSP. VR Audio is
gaining a seat at the grown-ups table -- GPU audio
compute, with scalability.

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

CREATING PRESENCE IN VR REQUIRES PHYSICAL ACOUSTICS-BASED
SOUND MODELING

 When we hear a sound in the real world,
we hear a dynamic superposition of many
reflected paths plus the direct path.

 Diffusion, diffraction and
absorption/dampening by reflecting
materials add more complexity to
reflections

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

EXAMPLE OF VR AUDIO RENDERING

 Geometric acoustics adds realistic physically modelled real-time occlusion and acoustics to
conventional binaural audio for VR

Sound Assets

Per-source time-
varying convolution

rendering

Mixing

Audio
Output

Render Thread Audio Physics Thread

For each sound source

Model the reflection paths to listener

For each path, model diffraction, diffusion,
delays and reflections as convolution filter

Update time-varying convolution filter

Any change in head/sound position?

Geometry and
materials
properties
from game

world

FireRays SDK TrueAudio Next

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

TRUEAUDIO NEXT PARTNERS

 TrueAudio Next cutting-edge
partners are actively engaged,
with more on the way. Support
our partners!

 Ask us about plugin and engine
integration – be a partner!

 Preview SDK available to NDA
partners – try it!

 Get more details under NDA

 Hear the DEMOs

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

 More features and optimizations

 Next generation APIs are great choice for VR
‒Not all pieces are there yet…

 We want to hear from you!

NEXT STEPS

THANK YOU

GAME DEVELOPER CONFERENCE | MARCH 15, 2016

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or
product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD
reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

©2016 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, LiquidVR™ and combinations thereof are trademarks of Advanced Micro Devices, Inc. Sulon, Sulon Q and the Sulon logo are trademarks or registered
trademarks of Sulon Technologies Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

