
D3D12 and Vulkan:
Lessons learned

Dr. Matthäus G. Chajdas
Developer Technology Engineer, AMD

Overview

The age of D3D12 & Vulkan has begun!

Caveat emptor

● D3D11 drivers are really well optimized

● Use your knowledge to outsmart & outperform
the D3D11 driver

● D3D12 was not invented to write a legacy API
driver on top

● Other issues

Your engine

Vulkan booster

D3D12 booster

Stage 0
Game

IRenderSystemD3D9-
LookAlike

“The renderer”

OpenGL D3D11 D3D9, OpenGL ES, etc.

No booster

Stage 0.5
Game

IRenderSystemD3D11-
LookAlike

“The renderer”

OpenGL D3D11 D3D9, OpenGL ES, etc.

No booster

Stage 1
Game

IRenderSystemD3D11-
LookAlike

“The renderer”

D3D11 D3D12 & Vulkan

No booster

Stage 2
Game

IRenderSystemD3D12-
LookAlike

“The renderer”

D3D11 D3D12 & Vulkan

Not low level enough

Not high level enough

Not enough boost

Stage 3
Game

“The renderer”

D3D11 D3D12OpenGL Vulkan

Low-level rendering layer Low-level rendering layer

Weeeeh!

State of the nation

● Engines are transitioning to support Vulkan and D3D12
● D3D11 support still required

● Most are midway between Stage 1 and 2

● Lots of thought needed to get the best out of all APIs
● Multi-queue support requires additional work

● Needs to scale down to D3D11

● Targeting D3D12/Vulkan and running on D3D11 is the
recommended way

Design for the future

● I’ll point out common design
issues

● Get your engine ready

● Turn your knowledge into better
performance

Design
first!

Resource Barriers

Barrier control

● Barriers are a new concept in D3D12/Vulkan

● Sad truth: Everyone gets them wrong

● Two failure cases:
● Too many or too broad: Bad performance

● Missing barriers: Corruptions

● D3D11 driver does this under the hood – and quite well

What’s a barrier, anyway?

Z-Buffer Ambient occlusionTransition

Render target to texture

• Probably a decompression is needed (& cache
flush)

• What will happen changes between vendors
and GPU generations – can be a no-op, can be
a wait for idle, can be a full cache flush

What’s a barrier, anyway?

UAV to resource

• If done badly, it will cost – flush or wait for idle

• If done correctly, those transitions can be free

UAV
Execute indirect

source
Transition

Missing barriers

● Format problems – GPU/driver specific
corruption

● Synchronization problems – time-
dependent corruption

Subresources

Subresources

● Need to be tracked individually
● Downsampling

● Shadow map atlas

● If you transition all subresources, use
D3D12_RESOURCE_BARRIER_ALL_SUBRESOURCES
instead of going one-by-one

Placed resources & initial states

● Render targets created as placed
resources etc. must be cleared before
use

● Go into clear state directly, don’t start
with some random state and transition

Unnecessary transitions
● Transitioning to wrong type

● Not common but still occasionally happens

● Make sure to check with validation layer

● Read-read transitions
● Moving between two read states, i.e. from

index buffer to shader resource

● Moving to union of all future states requires
only one barrier

Index buffer
Pixel shader

resource
UAV

Index buffer |
Pixel shader

resource
UAV

✗

✓

Costly transitions

● COMMON is for copies/present, not a general

“catch all” state

● Usually you want shader access

● In D3D12: PS_RESOURCE | NON_PS_RESOURCE

● In Vulkan: VK_ACCESS_SHADER_READ_BIT

Barrier control – Worst case #1

● Worst-case barrier system – too many barriers
● Material system going wrong

● For maximum damage, do it per stage

Buffer 0

Texture 0

Texture 1

Texture 0

Texture 1

Texture 2

Shader stage #1 Shader stage #2

Barrier control – Worst case #1

● “Late binding”, or fixing up resources per draw

● for (auto& stage : stages) {
for (auto& resource : resources) {

if (resource.state & STATE_READ == 0) {
ResourceBarrier (1, &resource.Barrier (STATE_READ));

}
}

}

● Let’s take a look what happens here!

Barrier control – Worst case #1

● Ideal flow

● Per material/stage anti-pattern
● One barrier per stage per resource

● Barriers scattered all over the command list

● In the worst case, multiple wait-for-idle back-to-back

Write access Draw Draw Draw Draw Draw

Write access Draw Draw Draw Draw Draw

Barrier control – Worst case #2

● “Base state” or redundant transitioning

● Transition to target state followed by restore

Render
target

Render
target

Copy Source
Shader

resource

Not actually used – just transitioned back

Target state Base stateBase state

Copy

Funny barriers

● ResourceBarrier (0, nullptr)
● Nothing changed, thank you!

● Indicates your state tracking is doing the wrong thing

● Previous state equal to next state
● Happens more than you believe – just say no

● Always remember – driver assumes you’re doing the
optimal thing, doesn’t go through any heuristic itself!

Get ready for the future

● You should not have to track all resource state

● 99% of your resources are immutable – read-only.
Trust me 

● Find “transitions” points – when do passes end?
● Batch barriers here

● Only transition what you need

G-Buffer Shadow maps Shading Post

Batch transitions Batch transitions Batch transitions

Design
first!

Barrier debugging tips

● Have a write/read bit

● Log all transitions
● Grep & spreadsheets are your friends

● Check for # transitions, transition type, etc.

● Number of transitions should be in the order of number
of writable resources

● Again, log and grep are your friends

● If it’s over 9000, something is fishy!

Barrier debugging tips

● Have a barrier-everything mode
● Same as the “worst-case” mode described previously

● For debugging only

● Ensure your resources are in a known state at
least once per frame
● For example, at frame end/start

● Transition everything into a known state – that resolves
problems like TAA or shadow atlas breakage

Going forward

● Even better, eventually
Write access Draw Draw Draw Draw Draw

Write access Draw Draw Draw Draw DrawDraw Draw

• Give driver time to handle the
transition

• “Split barrier” in D3D12
• vkCmdSetEvent + vkCmdWaitEvents

Summary: Barriers

● Make sure to transition all the resources
that need it (but not more)

● Go into the most specific state you can

● Remember you can combine various
states

Launch control

Launch control

● How to feed the GPU

● Submitting command lists, first and foremost

● Per-frame resource updates & tracking second

CPU threading

CPU core

CPU threading

● Don’t limit parallelism by assigning cores
manually

● Use a task/job system

● Uses all cores automatically

● Requires extra care for efficient work submission and
resource syncronization

Command list

Fence

What happened?

● Thread pool gone wild 

● CPU tasks submitted work at the end

● Task boundary became CPU/GPU sync point

● Take control over the command lists after the tasks
have finished

Command list

GPU execution

GPU executionGPU idle

What happened?

● Each fence is basically a wait-for-idle on the GPU (more or less)

● Better:
● Protect per-frame resources

● Unlikely you can start working on a command list “mid-frame” anyway

● Protect many resources with a single fence

● Make sure your job system can do this

● Batch up submissions as much as possible

● Submit early to keep the GPU busy at all times

Ideal submission

CL0 CL1 CL2 CL3 CL4 CL5 Post CL

CL1

CL2

CL3

CL4

CL5

CL0

Present Present

CL = Command list

GPU

CPU

Start build Submit

Command allocators

● Command allocators are defined to be “grow only”
● Record 100 draw calls on fresh allocator will allocate memory

● Resetting and recording the same draw calls again will not allocate memory again

● Try to reuse command allocators for similar workloads

● Recycling allocators will grow them to the worst-case size

● In total, number of allocators should be roughly
threads × # frames buffered × # GPUs

● We’ve seen 20.000 allocators being allocated – lots of memory waste

● Make sure to reuse allocators/command lists and don’t recreate
per frame

Designing for Multithreading

Know your workload and
schedule appropriately

Design
first!G-Buffer

Shadow map

Shadow map

Shadow map

Shadow map

Shade

SSAO

Post

Also: Renderpasses

● Build a high-level graph of your frame

● Tell the renderer about it via Vulkan’s
render-passes and subpasses

● Allows the driver to pick an optimal
schedule

Also: Renderpasses

● Allows you to express “don’t care” nicely

● Much more about this can be found in the
“Vulkan Fast Paths” talk

Debugging hints

● Have an option to submit all command lists in one
submission

● Helps with timing issues

● If not possible, you have in-frame GPU/CPU synchronization 

● Have an option to wait for any command list
● Helps with upload/resource synchronization

● Some resource gets corrupted? Flush the GPU before updating it

Summary: Submission

● Track resources at a per-frame
granularity

● Know your frame structure

● Threading is essential to get good CPU
usage

Async
compute

Graphics queue

Multi-queue
Async
compute

Multi-Queue

● D3D12 and Vulkan expose multiple queue types: Copy,
graphics, compute

● On Vulkan, check the queue capabilities and how many are present

● On D3D12, one of every kind is guaranteed to be available – but no
scheduling guarantees are given

● Compute queue is getting a lot of good use

● Copy queue is not used much – could use more love

Graphics and Compute

● We see great results from async compute so far

● Run compute load while graphics queue is idle

● We typically see one compute command list running in
parallel with one fence for sync

● That’s fine

● The more compute the better 

Async compute

● Pit of success

G-Buffer + Z-Buffer Shadow maps

SSAO, light tile classification

Shading
Post-

Processing

Different bottlenecks –
maximized GPU usage with
async

Async compute

● Pit of no success

G-Buffer + Z-Buffer Shadow maps

SSAO, light tile classification

Shading
Post-

Processing

Resource competition – can be
worse than running
sequentially

Async compute

● Pit of even more success

G-Buffer + Z-Buffer Shadow maps

SSAO, light tile classification

Shading

Post-Processing

Actual frame end – frames overlap

Design
first!

Copy to the rescue?

● Copy queue is low-latency, low-speed, but it’s separate hardware
● Copy queue is optimized for transfer over PCIe, not for GPU local copies

● For PCIe, it is the fastest way to transfer data

● Avoid waiting on copy queue from graphics/compute

● Ideal use of copy queue is streaming data over a few frames

● Haven't seen much use so far
● Talk to us why?

● For copying between adapters, copy queue is also best – consider shared
swapchain though

Summary: Multi-queue

● Use the compute queue to fill up the GPU

● Use copy queue to saturate PCIe

● Know your frame structure to find the
best location to schedule async work

Other issues

Resources

● On average, things work just fine
● Uploads rarely a problem, but remember to look at the copy queue

● On-GPU management mostly ok

● Packing sometimes not as tight as it could be, check alignment!

● For “high-frequency” resources like frame buffers, prefer
CreateCommittedResource in D3D12

● Lots of issues with residency and budget
● Time travel back to yesterday and watch Dave Oldcorn’s & Stephan Hodes’ talk “Right on

Queue - Advanced DirectX12 programming” [If time travel is not invented until the talk
replace with presentation URL]

● It’s an ugly topic – too much to cover here. Talk to me afterwards!

Debug runtime & Validation layers

● D3D12 and Vulkan have validation layers

● The driver does not validate for performance reasons

● We assume your application is perfect

● During development, make sure to pass validation warning/error free
● If your app doesn’t support validation, add support for that now!

● Any undefined behavior will bite you, especially with Vulkan – much wider hardware
variety

● Please don’t play spec lawyer yourself – if something is unclear or in doubt,
contact IHV partner to clarify

● Spec and validation layers are constantly evolving

● Various corner cases haven’t been fully understood yet

Mysteries that need more R&D

● ExecuteIndirect
● Haven’t seen serious problems with this yet

● Mostly used for draw auto and dispatch indirect – we expect more crazy use down the line

● See “Optimizing the Graphics Pipeline With Compute” on Friday

● Bundles
● Not enough game experience yet

● Unclear how to get performance out of it – we’re still gathering data

● mGPU
● Not enough game experience yet but in general seems to be “easy” enough

● Copies through system memory should go on copy queue

● Shared swapchain is good – but needs Windows 10 1511

Closing remarks

● Vulkan and D3D12 deliver on their promises
● Require additional thought

● Just trying to reimplement D3D11 does not provide a benefit!

● Engines require re-thinking to take advantage of the explicit APIs going
forward

● Many driver issues are now app issues
● Synchronization (barriers!)

● Memory management (uploads, residency)

● This means you have the power to fix most issues!

@jasperbekkers

@baldurk

@gwihlidal

Who’s awesome? You’re Awesome!

@maverikou

@dankbaker

@repi

Dean Sekulić?

Markus Rogowsky?

Raymund Fülöp

@martinjifuller

Thanks to KSP to let me use
screenshots! Go Jebediah!

