
1 FEBRUARY 2016 | CONFIDENTIAL

DOMINIK WITCZAK, AMD

TECH REVIEW: DANIEL RAKOS, AMD
DERRICK OWENS, AMD

THE MOST COMMON
VULKAN MISTAKES

2 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

WHO?

• Dominik Witczak
• MTS Software Development Engineer at AMD

• Regular contributor to the following standards:

• OpenGL (4.x)
• OpenGL ES (3.0 and beyond)
• Vulkan

• After-hours demoscene activist:

• Event organizer
• Programmer

• Trivia:

• Graduated from WMiI department back in 2010

3 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

WHAT?

Agenda for today:

• What is Vulkan?
• What is it and is it not about?
• Who is it for?

• Problematic areas:
• Command queues
• Descriptor sets
• Images
• Memory barriers
• Memory management
• Renderpasses
• Synchronization

4 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

A simplified view of a typical OpenGL or <DX 10 app rendering pipeline:

Why?

VULKAN
THE BEGINNINGS

(generate data) CPU thread: (upload data to GPU) (change state) Dispatch/draw! Swap buffers

 GPU usage:

5 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

A simplified view of a typical OpenGL or <DX 10 app rendering pipeline:

Why?
‒ CPU->GPU command submission is time-consuming:

‒ Only submit and start executing GPU-side if:
‒ All commands for a frame have been submitted..

‒ Command buffer fills up

‒ Upon app’s explicit request.

‒ App can submit different commands every frame:
‒ Cannot bake command buffers in advance!

VULKAN
THE BEGINNINGS

(generate data) CPU thread: (upload data to GPU) (change state) Dispatch/draw! Swap buffers

 GPU usage:

6 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

Typical OpenGL or <DX 10 app rendering pipeline (more advanced apps):

Can we do any better?

VULKAN
THE BEGINNINGS

Generate data CPU thread 1:

 GPU usage:

Generate data CPU thread 2:

Generate data CPU thread (N-1):

Generate data CPU thread N:

Wait Rendering thread: (upload data to GPU) (change state) Dispatch/draw! Swap buffers

7 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

Typical OpenGL or <DX 10 app rendering pipeline (more advanced apps):

VULKAN
THE BEGINNINGS

Generate data CPU thread 1:

 GPU usage:

Generate data CPU thread 2:

Generate data CPU thread (N-1):

Generate data CPU thread N:

Wait Rendering thread: (upload data to GPU) (change state) Dispatch/draw! Swap buffers

Use multiple rendering threads to streamline data uploads

Batch draw calls by state configuration

Use compute shaders to calculate data
in parallel on some HW

Generate as much data on GPU as possible

Render as many frames in advance as possible to reduce GPU bubbles

8 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 These workarounds do not solve the biggest problem:

‒ GPUs are highly asynchronous constructs:

‒ Designed to perform many kinds of tasks in parallel:
‒ Computations

‒ DMA transfers

‒ Rasterization

‒ Other (eg. accelerated image data conversion)

 But from API standpoint:
‒ GPU can only be requested to execute work chunks from one rendering thread!

‒ Apps cannot be trusted – CPU time spent on API call validation..

VULKAN
THE BEGINNINGS

9 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Do we really care?
‒ More and more CPU-bound apps are showing up on the market.

‒ Driver thread(s) consuming CPU time

‒ Increasing app complexity

‒ No easy way to address these in a cross-platform way.

‒ Tilers cannot leverage their full power on OpenGL ES.

‒ Only vendor-specific solutions exist (eg. Pixel Local Storage)

 Not to mention use cases like:
‒ Multiple GPU support

‒ VR

This is where Vulkan comes into play ..

VULKAN
THE BEGINNINGS

10 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Vulkan addresses all of the discussed issues:
‒ Exposes GPU as a set of command queue families.

‒ Command buffers can be submitted to queues from multiple threads.

‒ Application is responsible for:
‒ submitting work chunks to the right command queues.

‒ synchronization of GPU jobs’ execution.

‒ Exposes available GPU memory as a set of memory heaps.

‒ Application is responsible for flushes / invalidation / management.

 Applications are required to adapt to the running GPU’s capabilities.

 Misbehave and hang the GPU.

VULKAN
DO I NEED IT?

11 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Who NEEDS Vulkan?
‒ CPU-bound applications:

‒ Vast majority of information required to compute / render – prebaked at loading time.

‒ A frame can be rendered with just two commands!

‒ No driver-side validation = more CPU time for stuff that really matters.

‒ GPU-bound applications:
‒ Improve GPU utilization by:

‒ Submitting compute / graphics jobs to relevant queue families.

‒ Performing VRAM -> VRAM & RAM <-> VRAM copy ops with transfer queues.

‒ No sudden performance drops or spikes:
‒ All GPU-side caches are flushed, according to app-specified information, at predictable times.

‒ Driver no longer needs to do any guess-work.

VULKAN
DO I NEED IT?

12 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Who MAY need Vulkan?
‒ Existing GL 4.x / <= DX 11 applications:

‒ Moving to Vulkan may or may not bring performance benefits.

‒ Likely to spend less CPU power.

 Who does NOT need Vulkan?
‒Prototype applications requiring rapid development time:

‒ Validation layers do not cover whole specification yet.

‒ Many incorrect use cases are still not detected.

‒ Steep learning curve.

‒ Simple applications which are not CPU- or GPU-bound:
‒ Unless for learning purposes, these are unlikely to benefit from Vulkan.

VULKAN
DO I NEED IT?

13 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Our driver has been out for a few months now.

 Top-level observations:
‒ Vulkan is demanding to use, both app-side and time-wise.

‒ If an app works with GPU A, it doesn’t have to hold for GPU B.

‒ Common pit-falls:
‒ Barriers

‒ Correct data uploads

‒ Image transitions

‒ Renderpasses

‒ ISVs: generally reluctant to use validation layers.
‒ Please do. This saves both you and us a lot of time

VULKAN
PROBLEMATIC AREAS: INTRODUCTION

14 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 CPU-side:
‒ No rendering threads in Vulkan

‒ Work chunks submittable from multiple threads to GPU-side command queue.

 GPU-side:
‒ Command queues are grouped by type(s) of commands they can execute.

 Problem:
‒ Number of command queues – hardware-dependent!

‒ Number of queue families – hardware-dependent!

VULKAN
PROBLEMATIC AREAS: COMMAND QUEUES

15 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Why is this a problem?
‒ Efficient GPU task distribution is now Vulkan app’s responsibility.

‒ The solution must be able to up- and down-scale, depending on device caps.

‒ No open-source solutions available yet

‒ Only a single compute+gfx queue family guaranteed in Vulkan 1.0.

‒ Simple apps will likely rely solely on the presence of the universal queue..

‒ ..but wasn’t Vulkan written with performance in the 1st place?!

 Solution:
‒ Test your rendering engine on various Vulkan implementations.

VULKAN
PROBLEMATIC AREAS: COMMAND QUEUES

16 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 In Vulkan, command buffers:
‒ ..hold commands to be executed GPU-side

‒ ..are reusable, unless explicitly stated otherwise by the app.

 Problem:
‒ Apps often re-record command buffers every frame.

 Why is this a problem?
‒ Wastes a lot of CPU time.

‒ Not required in many cases.

VULKAN
PROBLEMATIC AREAS: COMMAND BUFFERS

17 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Problem:
‒ Apps re-record command buffers every frame.

 Solution:
‒ Move all parameters that affect the rendering logic to images / SBs / UBs.

‒ Pre-bake all command buffers once per each swapchain image, if necessary.

‒ Use indirect dispatch/draw commands if they improve command buffer reusability

VULKAN
PROBLEMATIC AREAS: COMMAND BUFFERS

18 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Memory management is also Vulkan app’s responsibility:
‒ Physical device reports >= 1 memory heaps

‒ Each memory heap:
‒ has platform-specific size.

‒ may, but needs not be device-local.

‒ Memory heaps – not directly accessible to apps.

‒ Instead, the driver exposes an array of HW-specific „memory types”:

‒ When alloc’ing GPU memory, Vulkan app specifies memory type index.

VULKAN
PROBLEMATIC AREAS: MEMORY MANAGEMENT

19 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 What’s the hard part?
‒ Vulkan<->app contract is very thin.

‒ The following is guaranteed:
‒ At least one memory type is host-visible & host-coherent.

‒ At least one memory type is device-local.

‒ Buffer & image memory alloc’s must come from driver-specific memory types

‒ The types MAY vary, depending on:
‒ Object properties

‒ Object type

‒ But the best is yet to come..

VULKAN
PROBLEMATIC AREAS: MEMORY MANAGEMENT

20 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 What’s the hardest part?
‒ ISVs tend to ignore the maxMemoryAllocationCount limit:

‒ The min max for the simultaneous live allocations limit is 4096.
‒ Very easy to reach in complex applications.

‒ The usual value reported by desktop Vulkan implementations.

 Solution:
‒ Pre-allocate & manage available GPU memory app-side.

‒ Avoid small memory allocations, sub-allocate them from larger ones.

VULKAN
PROBLEMATIC AREAS: MEMORY MANAGEMENT

21 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Majority of shaders access external data.

 In Vulkan:
‒ These are exposed via descriptors.

‒ Descriptors cannot be created directly.

‒ Instead, they are retrieved from a descriptor pool instantiated by the app:

VULKAN
PROBLEMATIC AREAS: DESCRIPTOR POOLS

22 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Problem:
‒ <maxSets> does not work as ISVs seem to expect.

 Frequently seen misunderstanding:
‒ „I can allocate <maxSets> * {poolSizeCount * pPoolSizes} descriptors”

‒ „No? Your driver sucks, that’s what I can do with vendor X’s driver!”

 Correct understanding:
‒ Up to N of prealloc’ed descriptors can be distributed to up to <maxSets> DSes.

VULKAN
PROBLEMATIC AREAS: DESCRIPTOR POOLS

23 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Descriptors are then grouped into Descriptor Sets for later usage.
‒ Descriptor type <-> binding relations is defined by a DS layout.

‒ Actual buffers / images for GPU consumption are bound in command buffers.

 A DS layout is created with:

VULKAN
PROBLEMATIC AREAS: SPARSE DESCRIPTOR BINDINGS

24 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Problem:
‒ How should a DS layout look for the following descriptor set:

‒ Binding 0: Storage buffer

‒ Binding 2: Storage image

‒ Do I need to include a VkDescriptorSetLayoutBinding item for binding 1 or not?

VULKAN
PROBLEMATIC AREAS: SPARSE DESCRIPTOR BINDINGS

25 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Problem:
‒ How should a DS layout look for the following descriptor set:

‒ Binding 0: Storage buffer

‒ Binding 2: Storage image

‒ Do I need to include a VkDescriptorSetLayoutBinding item for binding 1 or not?

 Solution:
‒ The app is inefficient, dummy bindings negatively affect performance.

‒ But if you really need them: yes, the binding is needed.

‒ Make sure to set ::descriptorCount to 0 for each unused binding.

VULKAN
PROBLEMATIC AREAS: SPARSE DESCRIPTOR BINDINGS

26 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 In Vulkan, texture:
‒ state is stored in Image Objects

‒ data is stored in Memory Objects, bound to an Image Object

 Image Objects are created by specifying properties of the image data:
‒ The usual bits and bobs such as:

‒ Type (1D, 2D or 3D)

‒ Base mipmap size

‒ Number of mipmaps

‒ Tiling type

‒ Usage flags

‒ Other miscellanea..

VULKAN
PROBLEMATIC AREAS: IMAGES

27 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 In Vulkan, texture:
‒ state is stored in Image Objects

‒ data is stored in Memory Objects, bound to an Image Object

 Image Objects are created by specifying properties of the image data:
‒ The usual bits and bobs such as:

‒ Type (1D, 2D or 3D)

‒ Base mipmap size

‒ Number of mipmaps

‒ Tiling type

‒ Usage flags

‒ Other miscellanea..

VULKAN
PROBLEMATIC AREAS: IMAGES

!

28 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Vulkan requires up-front image usage declaration at creation time.
‒ Usage is a bit combination of one or more flags below:

 A driver may not provide format support for certain image usages

 When it does, usage setting restricts:
‒ supported memory types

‒ maximum image resolution, number of samples, etc.

VULKAN
PROBLEMATIC AREAS: IMAGE USAGE FLAGS

29 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Common problem: App specifies incorrect image usage.

 Example:
‒ Consider an image created with VK_IMAGE_USAGE_TRANSFER_DST_BIT usage.

‒ The image must not be used as a color attachment.

‒ App does not care.

 Outcome:
‒ Undefined behavior

 Solution:
‒ This class of problems can be easily detected when validation is enabled.

VULKAN
PROBLEMATIC AREAS: IMAGE USAGE FLAGS

30 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Tiling setting determines image data layout used by the GPU:
‒ Linear: row-major image row arrangement, each row potentially padded

‒ Optimal: platform-specific data arrangement, optimized for speed.

 Properties of linearly-tiled images:
‒ Support a subset of functionality provided for optimally-tiled images

‒ Less performant

 Why bother wih linear images then?
‒ Crucial if you need to read back image data rendered by GPU.

VULKAN
PROBLEMATIC AREAS: IMAGE TILING

31 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Common problem: ISVs copy data directly to optimally-tiled images.

 Typical scenario:
‒ Image A is created with VK_IMAGE_TILING_OPTIMAL tiling setting.

‒ Application calls vkGetImageSubresourceLayout() for image A:

‒Application tries to upload data using the „reported” characteristics.

VULKAN
PROBLEMATIC AREAS: IMAGE TILING

32 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Solution:
‒ Use a staging buffer to copy data to optimally-tiled images:

1. Create a buffer object and bind a memory region to it.

2. Fill it with data.

3. Transition the image to GENERAL or TRANSFER_DST_OPTIMAL layout.

4. Schedule a copy op by calling vkCmdCopyBufferToImage().

5. Submit the command buffer, wait till it finishes executing.

6. Release the temporary buffer object.

‒ Remember: buffer -> image copy ops will not work for MS images.

‒ To upload data there, you’ll need to use an actual dispatch/draw call.

VULKAN
PROBLEMATIC AREAS: IMAGE TILING

33 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 GPUs may (de-)compress or rearrange data on-the-fly
‒ Less bandwidth pressure => better performance

‒ DX <=11 and OpenGL: transparent, heuristics-driven process.

‒ Vulkan: happens at image layout transition time.

‒ Example: DCC (see http://gpuopen.com/dcc-overview/)

 Hardware-level optimizations:
‒ Differ between HW architectures & HW generations.

‒ Generally vendor-specific

VULKAN
PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS

http://gpuopen.com/dcc-overview/

34 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 In Vulkan:
‒ Images must be moved to the right layout before usage.

‒ This can be requested by:
‒ injecting image barriers into command buffers

‒ correct renderpass & subpass configuration

‒ Get it wrong and visual corruption may occur:

VULKAN
PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS

35 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

VULKAN
PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS

Image A is created
(UNDEFINED layout)

Image A
(COLOR_ATTACHMENT_OPTIMAL -> SHADER_READ_ONLY_OPTIMAL layout)

Render to Image A

Dispatch call
(fetches texels from Image A)

Image A
(SHADER_READ_ONLY_OPTIMAL -> COLOR_ATTACHMENT_OPTIMAL layout)

Image A
(UNDEFINED -> COLOR_ATTACHMENT_OPTIMAL layout)

Command buffer 1

Command buffer 2

36 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Common problems:
1. Image is transitioned into an invalid layout.

VULKAN
PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS

Image A
(COLOR_ATTACHMENT_OPTIMAL -> TRANSFER_DST_OPTIMAL layout)

Render to Image A

Dispatch call
(fetches texels from Image A)

Image A
(TRANSFER_DST_OPTIMAL -> COLOR_ATTACHMENT_OPTIMAL layout)

37 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Common problems:
2. Old layout defined in an image barrier is incorrect.

VULKAN
PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS

Image A
(COLOR_ATTACHMENT_OPTIMAL -> SHADER_READ_ONLY_OPTIMAL layout)

Render to Image A

Dispatch call
(fetches texels from Image A)

Image A
(TRANSFER_DST_OPTIMAL -> COLOR_ATTACHMENT_OPTIMAL layout)

38 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Common problems:
3. „Hey AMD, my app works on vendor Y’s driver, your driver sucks!”

‒ Some vendors ignore image barriers. We do not.

‒ Whose driver is wrong then?

 Solution:
‒ Validation layers are constantly improving – use them!

‒ Test your software on various Vulkan implementations.

VULKAN
PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS

39 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Common problems:
4. ISVs misunderstand how renderpasses transition image subresources.

‒ Renderpasses are a novel, complex concept in Vulkan.

‒ Introduced to let the driver „travel in time” and know in advance:
‒ what color/DS attachments will be rasterized to or accessed (When? How?)

‒ which image subresource ranges need to be synchronized (When? How?)

‒ what layouts image subresources should be transitioned to, and when.

‒ That’s a lot of info to get wrong, especially when described manually

VULKAN
PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS & RENDERPASSES

40 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Common problems:
4. ISVs misunderstand how renderpasses transition image subresources.

VULKAN
PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS & RENDERPASSES

Renderpass: each „rendering pass” is described by user-specified subpass

Render subpass

Sum subpass

Blur subpass

HUD subpass

41 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Common problems:
4. ISVs misunderstand how renderpasses transition image subresources.

Renderpass: execution order is deduced from user-specified dependencies.

VULKAN
PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS & RENDERPASSES

Render subpass

Sum subpass

Blur subpass

HUD subpass

42 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Common problems:
4. ISVs misunderstand how renderpasses transition image subresources.

Renderpass: image transitions are deduced from subpass AND renderpass configuration

VULKAN
PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS & RENDERPASSES

Render subpass

Sum subpass

Blur subpassImage

Specified at renderpass create time: (VkAttachmentDescription)

- ::initialLayout (layout of the image when renderpass begins)
- ::finalLayout (layout to transition to when renderpass ends)

Specified for each subpass: (VkSubpassDescription)

- ::layout (layout to transition to when subpass starts)

43 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Common problems:
4. ISVs misunderstand how renderpasses transition image subresources.

Renderpass: image transitions are deduced from subpass AND renderpass configuration

VULKAN
PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS & RENDERPASSES

Render subpass Image

Specified at renderpass create time: (VkAttachmentDescription)

- ::initialLayout (layout of the image when renderpass begins)
- ::finalLayout (layout to transition to when renderpass ends)

44 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Common problems:
4. ISVs misunderstand how renderpasses transition image subresources.

Renderpass: image transitions are deduced from subpass AND renderpass configuration

VULKAN
PROBLEMATIC AREAS: IMAGE LAYOUT TRANSITIONS & RENDERPASSES

Sum subpass

Blur subpass

Specified for each subpass: (VkAttachmentReference)

- ::layout (layout to transition to when subpass starts)

45 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Uber-general Vulkan’s GPU-side command execution rules:

1. Command queues run independently of each other.

2. When submitted to queue A, command buffers execute in the specified order

3. Unless order is enforced by barriers / renderpass / sync primitives:

1. Submitted commands may be executed in parallel

2. Submitted commands may be executed out-of-order.

 The following sync objects are available:
‒ Events (intra-queue synchronization)

‒ Semaphores (inter-queue synchronization)

‒ Fence (blocks CPU thread until submitted job chunk<s> finish<es> running)

VULKAN
PROBLEMATIC AREAS: GPU-SIDE SYNCHRONIZATION

46 FEBRUARY 2016 | CONFIDENTIAL

MAY 2016

 Problem:
‒ ISVs sometimes create sync objects every frame.

 Solution:
‒ Avoid at all cost!

‒ Remember that:
1. Events can be reset CPU- and GPU-side

2. Fences can be reset CPU-side

3. Semaphores automatically reset after being successfully waited upon.

‒ If more feasible, bake per-swapchain image set of sync objects in advance

VULKAN
PROBLEMATIC AREAS: GPU-SIDE SYNCHRONIZATION

47 FEBRUARY 2016 | CONFIDENTIAL

ANY QUESTIONS?

48 FEBRUARY 2016 | CONFIDENTIAL

