
INTRODUCING THE  

Radeon Rays SDK

High-Efficiency, High-Performance 
Heterogeneous Ray Tracing Intersection 
Library for GPU and APU on Any Platform 
with OpenCL.
 
INTRODUCTION

Radeon Rays is a GPU intersection acceleration library with 
basic support for heterogeneous systems. AMD developed 
Radeon Rays to help developers get the most out of AMD 
GPUs and APUs, as well as save them from maintaining 
hardware-dependent code. Radeon Rays exposes a well-
defined C++ API for scene construction and performing 
asynchronous ray intersection queries. The current 
implementation is based on OpenCL, which means Radeon 
Rays supports execution on all platforms conforming to the 
OpenCL 1.2 standard. It is not limited to AMD hardware or a 
specific operating system. Radeon Rays is released under the 
GPUOpen license, which means you can modify the library 
to your specific needs if necessary. However, using Radeon 
Rays through its API guarantees compatibility and best 
performance across the entire line of current and future  
AMD products.

Ambient Occlusion

GI and Shadows



INTRODUCING THE RADEON RAYS SDK 2

SYSTEM REQUIREMENTS: 
• Apple Mac Pro
• HP Z820 - Intel Xeon E5-2660 @ 2.2 GHz - 32Gb RAM - FirePro W9100 16Gb  - Windows 7 x64 15.20 driver 

GETTING STARTED WITH THE API
The concept of API and its workflow is relatively simple. To use the API, include the following header:

#include <intersection/radeonrays.h>

All classes and functions in Radeon Rays are defined in the corresponding namespace, so to access them the user explicitly 
specifies the namespace or inserts the following using statement:

using namespace RadeonRays;

Device enumeration
Next the user configures the intersection devices by means of the Radeon Rays device enumeration API.  Radeon Rays exposes 
all devices capable of performing intersection queries with the following static methods of IntersectionApi class:

// Get the number of devices available in the system 

static int GetIntersectionDeviceCount(); 

// Get the information for the specified device 

static IntersectionDeviceInfo const& GetIntersectionDeviceInfo(int devidx);

FirePro W9100    

Sponza (273K triangles) Primary (ms / Mrays/s) Shadow (2 x primary, ms / Mrays/s) Secondary (ms / Mrays/s)

VP1 (easy) 6 / 384 20 / 230 27 / 85

VP2 (medium) 7.8 / 295 26 / 177 32.8 / 70

VP3 (hard) 10 / 230 29.8 / 154 39.7 / 58

    

Rungholt (6.7M triangles)    

VP1 (easy) 5 / 460 6 / 768 17.9 / 95

VP2 (medium) 11.6 / 199 22.8 / 202 33.4 / 70

VP3 (hard) 6.6 / 351 20.4 / 225 73 / 31.5

    

MacPro (D700 x2)    

Sponza (273K triangles) Primary Shadow (double number) Secondary

VP1 (easy) 8 / 288 17 / 271 26 / 88

VP2 (medium) 9 / 256 24 / 200 30 / 77

VP3 (hard) 13 / 177 22 / 208 34 / 67

    

Rungholt (6.7M triangles)    

VP1 (easy) 6 / 384 5.5 / 837 21 / 83

VP2 (medium) 7 / 329 18 / 242 56 / 40

VP3 (hard) 6 / 384 22.5 / 204 70 / 31

INTRODUCING THE  

Radeon Rays SDK



INTRODUCING THE RADEON RAYS SDK 3

Devices are identified by their indices, so the user needs to check device capabilities and save each device’s index somewhere 
if the device fits user needs. For example, you can use the following construct to choose the GPU OpenCL device using 
enumeration API:

int gpuidx = -1; 

for (int idx=0; idx < IntersectionApi::GetIntersectionDeviceCount(); ++idx) 

{  

 IntersectionDeviceInfo const&    

 devinfo(IntersectionApi::GetIntersectionDeviceInfo(idx));

 if (devinfo.type == IntersectionDeviceInfo::kGpu &&  

 devinfo.apis & IntersectionDeviceInfo::kOpenCl) 

 { 

  gpuidx = idx; 

 } 

}

API Initialization
Next the user creates an API instance based on the device chosen in previous step, as shown in the following code:

int apitype = IntersectionDeviceInfo::kOpenCl; 

api_ = IntersectionApi::Create(0, &gpuidx, &apitype, 1);

Note that the Create() function accepts an array of devices. However, only a single device is supported in the current library 
version. The first parameter is also reserved for future use and should be 0.

There is a chance an error will occur during library initialization (OpenCL runtime issue, access rights problem, etc.). To 
communicate the reason back to the user, the library uses a derivative of the Exception interface so the user can catch it and 
get the text description of the error.

Geometry creation
Now that the user has an instance of the API, he or she can move to the geometry creation stage.  The current version of the 
API supports triangle, quad, and mixed meshes along with the instancing. The following snippet shows how to create a simple 
mesh consisting of a single triangle:

// Mesh vertices 

float vertices[] = { 

 0.f,0.f,0.f, 

 0.f,1.f,0.f, 

 1.f,0.f,0.f 

}; 

 

int indices[] = {0, 1, 2}; 

 

// Number of vertices for the face 

int numfaceverts[] = { 3 }; 

Shape* shape = api_->CreateMesh(vertices, 3, 3*sizeof(float), indices,  

0, numfaceverts, 1));

Here 0 is used for index stride, meaning indices are densely packed. The method is blocking. However, it is safe to call from 
multiple threads as long as these calls are not interleaved with ray casting method calls. 

INTRODUCING THE  

Radeon Rays SDK



INTRODUCING THE RADEON RAYS SDK 4

The next step is to construct the scene from multiple meshes. To add/remove meshes from the current scene (which is 
implicitly defined by API instance), you can use the following methods:

api_->AttachShape(shape); 

api_->DetachShape(shape);

These methods are fast since they are not going to launch any time-consuming operations.  Instead actual data transfers 
and acceleration structure constructions are deferred till the call to Commit() method. This method should be called any time 
something any time something has changed in the scene:

api_->Commit()

The method is blocking and can’t be called simultaneously with other API methods. 

Instancing
The geometry can be instanced in the API, which means the same base geometry is used for different entities with different 
world transforms. The following code should be used to instantiate the mesh:

Shape* instance = api_->CreateInstance(shape);

Instance can be attached to the scene the same as any other regular shape. Instancing allows you to create overwhelmingly 
complex scenes with a moderate memory footprint by means of geometry reuse.

Simple intersection queries
As soon as the geometry is committed, the user can perform intersection queries. As the library is specifically designed for 
heterogeneous architectures, it accepts batches of rays rather than individual rays as an input to intersection query methods. 
As a general rule, the larger the batch the better because massively parallel devices can maintain better occupancy and 
perform better latency hiding.

There are basically two types of intersection queries:

• Closest hit query (intersection)
• Any hit query (occlusion)

The methods for querying closest hit are called IntersectBatch() and methods for occlusion are called IntersectBatch() 
(occlusion predicate). 

The simplest version of an intersection query looks like this:

// Rays 
ray rays[3]; 
 
// Prepare the ray 
rays[0].o = float4(0.f,0.f,-10.f, 1000.f); 
rays[0].d = float3(0.f,0.f,1.f); 
rays[1].o = float4(0.f,0.5f,-10.f, 1000.f); 
rays[1].d = float3(0.f,0.f,1.f); 
rays[2].o = float4(0.5f,0.f,-10.f, 1000.f); 
rays[2].d = float3(0.f,0.f,1.f); 
 
// Intersection and hit data 
Intersection isect[3]; 
 
// Intersect 

ASSERT_NO_THROW(api_->IntersectBatch(rays, 3, isect));

INTRODUCING THE  

Radeon Rays SDK



INTRODUCING THE RADEON RAYS SDK 5

This method accepts an array of ray structures. The layout of a ray structure is:

o.xyz Ray origin

d.xyz Ray direction

o.w Ray maximum distance

d.w Time stamp for motion blur

uvwt.xyz Parametric coordinates of a hit (xy for triangles and quads)

uvwt.w Hit distance along the ray

shapeid ID of a shape

primid ID of a primitive within a shape

The resulting information for a closest hit query is returned as an array of Intersection structures with the following layout:

Shape ID corresponds to a value which is either automatically assigned to a shape at creation time by the API or manually set 
by the user using Shape::SetId() method. Primitive ID is a zero-based index of a primitive within a shape (in the order they 
were passed to CreateMesh method). If no intersection is detected, they are both set to kNullId.

An occlusion query has the same format but returns an array of integers, where each entry is either -1 (no intersection) or 1 
(intersection).

Asynchronous queries
The methods discussed above are blocking, but there is an option to launch a ray query asynchronously using the following 
version of the method:

// Intersect 

Event* event = nullptr; 

api_->IntersectBatch(rays, numrays, intersections, nullptr, &event);

This method launches an asynchronous query returning the pointer to an Event object. This event can be used to track the 
status of execution or to build dependency chains. To track the status, the user can use the following methods:

event->complete(); 

event->Wait();

The first call returns true if the method has completed and the contents of the result buffer are available. The second waits 
until execution is complete.

In addition, you can pass the Event object to another ray query, thus establishing a dependency. The second ray query in this 
case would start only after the first one has finished: 

api_->IntersectBatch(rays, numrays, intersections, event, nullptr);

INTRODUCING THE  

Radeon Rays SDK



INTRODUCING THE RADEON RAYS SDK 6

Memory API
The previously described intersection queries operate on CPU memory. However, the library provides a memory interface 
that you can use to create buffers in device memory (for example GPU memory). The layout of the buffers is essentially 
the same as for their CPU counterparts. To create a buffer in remote device memory, use the following method of the 
IntersectionApi class:

virtual Buffer* CreateBuffer(size_t size, void* initdata) const = 0;

 
The buffer can be mapped and unmapped with the following calls:

virtual void MapBuffer(Buffer const* buffer, MapType type, size_t offset, size_t size, void** data, 

Event** event) const = 0; 

 

virtual void UnmapBuffer(Buffer const* buffer, void* ptr, Event** event) const = 0;

Note that these operations are asynchronous and you need to establish correct dependencies to intersection queries to ensure 
they work as intended. 

OpenCL interop
There is a way to use existing OpenCL contexts in the API as well as to share existing OpenCL buffers with the application 
code. To create an API instance using an existing OpenCL context, the user can call the following:

Cl_int status = clGetDeviceIDs(platform[0], type, 1, &device, nullptr); 

cl_context rawcontext = clCreateContext(nullptr, 1, &device, nullptr, nullptr, &status); 

cl_command_queue queue = clCreateCommandQueue(rawcontext, device, 0, &status); 

api_ = IntersectionApi::CreateFromOpenClContext(0, rawcontext, &device, &queue, 1);

 
The user must ensure that there is only one device present in the context passed into the API. 

To share the buffer, you can use this code:

cl_mem rays_buffer = clCreateBuffer(rawcontext, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, 

sizeof(ray), &r, &status); 

 

rays = api_->CreateFromOpenClBuffer(rays_buffer); 

Global options
Options control various aspects of Radeon Rays behavior. Currently, they are mainly used to control acceleration structure 
construction and traversal algorithms. Refer to the header file for the complete set of supported options. For example, to set 
an option you use this call:

api_->SetOption(“bvh.builder”, “sah”);

Acceleration strategies
The default acceleration structure is Bounding Volume Hierarchy (BVH) using spatial median splits. It maintains fast build 
times and provides decent intersection performance. You can enable SAH builder using the global option and trade off 
construction time for better intersection performance. 

INTRODUCING THE  

Radeon Rays SDK



If you need faster refits (for example if geometry is frequently changing position), you can enable two level BVH, which 
doesn’t get re-created every time the geometry transform is changed. 

For scenes containing instances or motion blur, two level BVH is used by default.

Releasing entities
All the entities created via the Radeon™ Rays interface should be released when an application shuts down. The following 
methods are available to release shapes, buffers, and events:

api_->DeleteShape(shape); 

api_->DeleteBuffer(buffer); 

api_->DeleteEvent(event);

 
Destroy the API instance itself with:

IntersectionApi::Delete(api_);

©2016 Advanced Micro Devices, Inc. All rights reserved.  AMD, the AMD Arrow logo, Radeon and combinations thereof are trademarks of Advanced Micro 
Devices, Inc. Other names are for informational purposes only and may be trademarks of their respective owners. PID 169798-A

INTRODUCING THE  

Radeon Rays SDK


