
 1

RenderMonkey SDK Version 1.71

OVERVIEW ... 3

RENDERMONKEY PLUG-IN ARCHITECTURE PHILOSOPHY .. 3
IMPORTANT CHANGES WHEN PORTING EXISTING PLUG-INS.. 3

GENERAL .. 4

GENERATING A RENDERMONKEY PLUG-IN FRAMEWORK .. 4
RENDERMONKEY APPLICATION DESIGN .. 5
SUPPORTED API AND COMPATIBILITY.. 5

APPLICATION AND SDK LAYOUT ... 6

SDK LIBRARIES ... 7
RmCore ... 7
RmUtilities .. 7
RmMFCUtilities.. 7
RmGrfxUtil.. 7

SDK INCLUDES .. 7
PLUG-IN DLL ORGANIZATION.. 10

RmInitPlugInDLL ... 10
RmGetNumPlugIns ... 10
RmGetPlugIn .. 10
RmFreePlugIn... 10
RmUninitializePlugInDLL .. 10

APPLICATION INTERACTION... 11

APPLICATION ACCESS .. 11
APPLICATION MESSAGES.. 11

Database Transactions ... 11
Application State... 13
Shader Compilation .. 14
Viewer Plug-ins... 14

HIDDEN DATABASE NODES .. 15
Workspace Editor Support .. 15

 2

Registry Branches .. 16
Plug-in Data Nodes ... 17
Stream Channel and Stream Nodes ... 17
State Nodes ... 18
Shader Constants ... 18
Sampler Nodes .. 18

USER INTERACTION.. 19

WINDOW CREATION AND MANAGEMENT IN RENDERMONKEY .. 19
Dialogs.. 19
Docking Windows ... 19
MDI Child Windows ... 21

UNDO / REDO OPERATIONS .. 21
APPLICATION PREFERENCES MANAGEMENT .. 22

PLUG-IN MANAGEMENT .. 24

SUPPORTED PLUG-IN TYPES ... 24
PLUG-IN DESCRIPTION STRUCTURE .. 25
PLUG-IN INTERFACES ... 26

Generic Plug-in Interface ... 26
Editor Plug-in Interface.. 27
Importer Plug-in Interface .. 27
Exporter Plug-in Interface .. 28
Geometry Loader Plug-in Interface .. 28
Texture Loader Plug-in Interface ... 29
Generator Plug-in Interface.. 29

RMMODULE AND RMMODULEMANAGER HELPER CLASSES .. 30

PLUG-IN PROJECT SETUP.. 31

SETUP FOR VISUAL STUDIO 2005 ... 31
Requirements .. 31
Creating a New Project .. 31
Project Settings ... 32
Project Debugging .. 36

SDK FEEDBACK... 37

 3

Overview

RenderMonkey Plug-in Architecture Philosophy

The entire RenderMonkey application was created using the supplied Plug-in SDK. The

plug-in architecture allows the development and addition of new features to

RenderMonkey, without the need to re-compile the entire application to include the new

feature. Developers can create custom plug-ins to solve unanticipated problems specific to

their projects, when the need arises. This also allows a convenient method for AMD to

share new RenderMonkey tools in the future.

Important Changes When Porting Existing Plug-Ins

When porting over any existing plug-ins to work with RenderMonkey 1.71, the SDK

version must be up-to-date for the plug-in to get loaded. The developer can use the

following new built-in #defines for this purpose:

RENDERMONKEY_SDK_CURRENT_VERSION_MAJOR
RENDERMONKEY_SDK_CURRENT_VERSION_MINOR

Plug-Ins without the current SDK version will not get loaded.

 4

General

Generating a RenderMonkey Plug-In Framework

RenderMonkey includes a PlugIn Wizard that will generate a Microsoft Visual Studio 2005

project and code for new RenderMonkey plug-in development. The PlugIn Wizard is

available from the Help menu within RenderMonkey.

Selecting PlugIn Wizard will make a dialog box appear that allows the user to choose the

type of plug-in to build (GeometryLoader, Exporter, Importer, Editor, TextureLoader, or

Generator) and to specify the name of the plug-in.

Using the PlugIn Name as a base for the class name, the wizard will generate a project that

contains all the necessary entry points for the selected PlugIn Type. The entry points will

also contain code specific to that PlugIn Type that provides a framework for the necessary

functionality of that plug-in. Generated plug-in projects are located in the ‘RenderMonkey

1.71\SDK\Projects’ directory. This document, along with comments throughout the code,

will guide the user in understanding the necessary functionality of each entry point to aid in

development of a working custom plug-in.

Compiling the SDK PlugIns will require that the DirectX 9 SDK from February 2007 is

installed on the computer. Installing the DirectX SDK should set the DXSDK_DIR

environment variable to the folder that the DirectX SDK was installed to. This variable

must be set to compile the generated plug-ins in Visual Studio.

 5

RenderMonkey Application Design

RenderMonkey is a single document application. This means that only one workspace file

(.rfx) can be open at a time. However, multiple instances of RenderMonkey can be run at

the same time, allowing the transferring of data across separate instances.

All of the necessary data to render an effect is stores in the run-time database. All real-time

changes to the database are managed by the application and propagated to the plug-ins

through the plug-in messaging system. The application will send out Windows-style

messages to the plug-ins message handler, allowing the appropriate behavior to be

implemented by the plug-in itself. Note that all API specific rendering resources exist in

the viewer plug-ins, meaning other plug-ins will have no default access to this specific

data.

The run-time database consists of:

- Effect Group(s)

- Effect(s)

-Pass(es)

- Render State Block

- Pixel Shader

- Vertex Shader

- Model Reference

- StreamMap Reference

- Texture Object(s)

Variables, Models, Textures, and StreamMapping nodes can live at most levels of the

workspace.

Please refer to RMEffect.h for full node definitions, as well as SDK\Docs\html\index.html

for class hierarchy documentation.

Supported API and Compatibility

The SDK is written in pure C++. RenderMonkey version 1.71 and SDK 1.71 support plug-

in development in Visual Studio 8.0 (2005). Support for Visual Studio 6.0 and Visual

Studio 7.1 (.Net) is no longer available. Developers can create plug-ins using either the

Win32 API, or MFC as they please. Please refer to the sample projects included with the

SDK for examples of both MFC and Win32 plug-ins.

 6

Application and SDK Layout

RenderMonkey will install the following directories:

1. Data

The Data directory stores initialization files pertaining to API specific state

information, parser / keyword information, and XML / DTD information. Generally,

these files will not normally be edited by the user, and the information contained within

is mostly tied to the rendering API’s, as well as the RenderMonkey application itself.

The one file that may be edited by the user is DefaultWorkspace.rfx. This file

determines the default initialization that will accompany a newly added database node

in the workspace. Please refer to the DefaultWorkspace section for a full explanation

on how to use the DefualtWorkspace.rfx file.

2. Examples

The Examples directory is where example workspaces and related files are stored. The

workspaces themselves are stored in the Dx9 / GL2 subdirectories, and the related

texture / model files are all stored in the Media subdirectory.

3. Plugins

The Plugins directory is where the application will look for all available plug-in DLLs

to load upon application startup. Any new plug-in DLL should be placed in this

directory for the application to find.

4. SDK

The SDK directory will contain the necessary components for the creation of new

plugIn DLLs. The following subdirectories are included:

a. Docs

The Docs subdirectory contains any SDK related documentation.

b. Examples

The Examples subdirectory contains example plug-in projects for both Visual

Studio 6 and Visual Studio 7.1. There are example projects for most available

plug-in types.

c. Include / Lib

The Include and Lib subdirectories include the appropriate header (.h) and

library (.lib) files that may be required for plug-in project development.

 7

d. Projects

The Projects directory contains the plug-in projects that are generated by the

Plug-In Wizard.

e. Wizard

The Wizard subdirectory contains code samples used by the plug-in wizard.

SDK Libraries

The following libraries (.lib) with associated headers (.h) are included for plug-in

development:

RmCore

This library contains the node database definitions, plug-in interfaces, application interface,

various manages interfaces, as well as custom classes. This is the main library that must be

used with all plug-ins.

RmUtilities

This library contains many useful utilities such as stl-like list and array classes, a string

handling class, window flicker reducing utilities, window message hook utilities, dynamic

control placement utilities, etc. This library can optionally be included for plug-in

development.

RmMFCUtilities

This library contains many useful MFC based utilities such as custom dialog controls and

widgets, an iconic menu class, etc. This library can optionally be included for plug-in

development.

RmGrfxUtil

This library contains texture image creation and management utilities, image conversion

utilities, and API specific device utilities. This library can optionally be included for plug-

in development.

SDK Includes

RmApplication.h

Provides the definition for the IRmApplication interface. The IRmApplication

interface, which is globally available through the getRmApp() function, provides the
main access point for the runtime database as well as the user interface.

 8

RmArray.h

Provides a templated RmArray class interface. Created to eliminate the need for an STL

implementation, this general interface provides standard array class functionality.

RmCore.h

Includes all core library headers in one convenient header include file.

RmDefines.h

Contains RenderMonkey used #defines. This includes plug-in Message ID’s, and

reserved window control ID’s, and other commonly used #defines. Refer to this file for

parameter details of RenderMonkey plug-in messages.

RmEffect.h:

Contains definitions of the entire runtime database node structure, and related helper

definitions. Refer to this file for a complete description of each node type’s class definition.

RmFile.h

Contains file helper functions to open / close a file.

RmLinkedList.h

Contains a templated RmLinkedList class interface. Created to eliminate the need for

an STL implementation, this general interface provides standard linked list class

functionality.

RmMath.h

Contains basic 3D math helper (RmVector, RmBoundBox and many more)

RmMatrix.h

Contains RmMatrix4x4 helper class

RmMesh.h

Contains mesh classes to help a programmer to keep information about geometry in a

nicely packed manner.

RmPlugIn.h

 9

This file contains declarations for all supported plug-in interfaces for creation of

RenderMonkey plug-ins.

RmRegistryManager.h

IRmRegistryManager interface definition. The registry manager is used to manage

RenderMonkey application registry (also called 'global registry') as well as workspace-

specific registry branches. Each registry branch can store information about either

application settings (in global registry) or about plug-ins (for example) or specific window

information (window placement information, for example).

RmStateManager.h

IRmStateManager interface definition. The state manager is used to manage the

available render states, texture states, etc.

RmString.h

Contains RmString template interface definition. This class provides a convenient

interface for common string manipulation routines.

RmString.inl

Contains RmString template interface implementation.

RmStringToPtr.h

Contains RmStringToPtrMap class definition. Created to eliminate the need for an

STL implementation, this general interface provides the commonly used mapping from a

string to a pointer.

RmTypes.h

Contains commonly used structure definitions, enumerations, etc. This file also contains

the RenderMonkey recognized string versions of all runtime database node types.

RmUndo.h

Contains helper class definitions for Undo / Redo operations. These classes are used in

conjunction with IRmApplication::StartUndoMaking and

IRmApplication::EndUndoMaking to perform undoable runtime database node

manipulations.

RmVariableManager.h

 10

Contains IVariableManager interface definition. This interface manages lists of

variables of specific types (such as RenderMonkey’ predefined variables).

RmXMLManager.h

Contains IRmXMLManager interface definition. This interface is used to load / save
RenderMonkey xml (.rfx) files, and query the xml data for RenderMonkey specific node

data.

Plug-in DLL Organization

A plug-in DLL can contain one or more plug-ins. Each plug-in DLL must implement the

following entry points:

RmInitPlugInDLL

This function will get called to initialize and perform any required setup for the actual

DLL. This is a good place to instantiate all plug-in instances.

RmGetNumPlugIns

This function returns the number of plug-ins implemented in a particular DLL.

RmGetPlugIn

This function is called to retrieve a particular plug-in from the DLL, based on a zero based

index.

RmFreePlugIn

This function is called to free a particular plug-in from a DLL.

RmUninitializePlugInDLL

This function will get called before the DLL is unloaded by the application.

 11

Application Interaction

All necessary data to render an effect is stored in the node database. This includes the

effect nodes, pass nodes, model nodes, etc. RenderMonkey enforces node rules to ensure

the database is maintained in a valid state. For example, only one vertex shader (or

program) is allowed in each pass, only one model reference if allowed in each pass, etc.

For further information regarding the node rules, please refer to the XML DTD, which

largely mirrors the rules RenderMonkey will enforce. Also, the Workspace Editor section

on the RenderMonkey user documentation also will state many of the rules surrounding

node placement.

Application Access

The IRmApplication interface is accessible from any plug-in through the global function

getRmApp(). The IRmApplication interface is the main entry point for window

creation and management. It allows users to clear output window text and to specify new

text to output, and contains an instance of the current workspace (node database). Through

the interface, all node transactions can be performed, including the launching of node

editors.

IRmApplication also provides access to various manager interfaces. These manager

interfaces include the application registry manager, predefined variable manager, XML

manager, etc.

Application Messages

All application events (non-Windows) and all node database transactions are propagated to

the plug-ins by RenderMonkey messages. All plug-ins must support a message handler to

process these messages. Please refer to the plug-in interface descriptions for details

regarding this handler. Any plug-in can send out a message at any point by notifying the

application through the IRmApplication::BroadcastMessage(…) function.

Please refer to the SDK file RmDefines.h for a full listing of messages and supporting

message data.

Supported Transactions and Application Messages

Database Transactions

RM_MSG_NODE_UPDATED

This message will be sent when a node has experienced a structural change. This structural

change could be relevant to the node itself, or any of the children. Plug-ins should

 12

recalculate any information that may be affected by this node or any of its children. It is

possible that child nodes either no longer exist, or have been added to the node itself.

RM_MSG_NODE_DELETED

This message is sent to inform the plug-ins that a node is getting deleted from the database.

At the point the message is broadcast, the node has been removed from the database, but

the heritage information is still contained within the removed node. This allows plug-ins to

react accordingly before the node is actually deleted from memory.

RM_MSG_NODE_ADDED

This message gets sent out when a node has been added to the database. The added node

may have accompanying child nodes, whose additions will not be notified through similar

messages. The plug-ins are expected to handle these child nodes accordingly.

RM_MSG_NODE_NAME_CHANGED

This message gets sent out when a node name has changed. The message will contain the

old node name.

RM_MSG_NODE_VALUE_CHANGED

This message is sent out to notify plug-ins of a simple value change within a node.

Normally, value change messages are associated with numeric variable nodes.

RM_MSG_VARIABLE_SEMANTIC_CHANGED

This message is sent out to notify plug-ins of a simple value change within a node.

Normally, value change messages are associated with numeric variable nodes.

RM_MSG_MODEL_ORIENTATION_CHANGED

This message is sent out to notify plug-ins that a model orientation has changed, and users

of the model should reload their data.

RM_MSG_TEXTURE_ORIGIN_CHANGED

This message is sent out to notify plug-ins that a texture origin has changed, and users of

the texture should reload their data.

RM_MSG_BEGIN_MESSAGE_BLOCK / RM_MSG_END_MESSAGE_BLOCK

This message is sent out to notify plug-ins that a block of related messages are about to be

sent out. This is typically done then multiple changes are taking place at the same time,

such as node drag and drop, etc.

 13

Please note that with most node transactions, the plug-in must send out an application

message to notify all plug-ins about the database change. This is done through the

IRmApplication::BroadcastMessage function. This is necessary to give all
plug-ins a chance to update any pointers, close editors, etc. By not informing plug-ins of

database changes, RenderMonkey plug-ins will become unstable.

Application State

RM_MSG_APP_FILE_NEW

Sent out to all plug-ins to notify them that a new workspace was created.

RM_MSG_APP_FILE_OPEN

Sent out to all open modules to notify them that a file was opened.

RM_MSG_APP_FILE_OPEN_BEGIN / RM_MSG_APP_FILE_OPEN_COMPLETE

Sent out to all open modules to notify them that a file open operation has started /

completed.

RM_MSG_APP_QUERY_TO_SAVE_DATA

Sent out to all open modules before RenderMonkey saves the workspace. This is to ensure

that all of the plug-ins propagate any data that they may have into the run-time database

before it's saved out to XML. The plug-ins may query the user at this point to whether the

data should, or should not, get saved.

RM_MSG_APP_SAVE_DATA

Sent out to all plug-ins before RenderMonkey saves the workspace to make sure that the

plug-ins propagate any data that they may have into the run-time database before it's saved

out to XML. The plus-ins should not query the user whether the data should be saved, but

just propagate it directly.

RM_MSG_APP_SAVE_DATA_BEGIN / RM_MSG_APP_SAVE_DATA_COMPLETE

The saving data operation has started / finished.

RM_MSG_APP_FILE_CLOSE

Sent out to all plug-ins to notify them that a workspace file is about to be closed.

RM_MSG_APP_FILE_CLOSE_BEGIN / RM_MSG_APP_FILE_CLOSE_COMPLETE

 14

Sent out to all plug-ins to notify them that a file is about to be closed and the operation has

started / finished.

RM_MSG_APP_CLOSING

Sent out to all open modules to notify them that the application is about to close.

RM_MSG_APP_SILENT_BEGIN / RM_MSG_APP_SILENT_COMPLETE

Sent out to all open modules to notify them that the application may not / may display any

dialog boxes that block, waiting on user input.

Shader Compilation

RM_VIEW_COMPILE_SHADERS

This message forces compilation of all modified ("dirty") shaders, usually in the active

effect.

RM_VIEW_COMPILE_SHADERS_BEGIN /
RM_VIEW_COMPILE_SHADERS_COMPLETE

This message notifies the plug-ins that shader compilation has started / finished.

Viewer Plug-ins

RM_VIEW_CHANGE_ACTIVE_EFFECT

This message notifies the viewer plug-in that the active effect has changed. The viewer

plug-in should prepare all appropriate resources and begin rendering the new active effect.

RM_VIEW_UPDATE_TEXTURES / RM_VIEW_UPDATE_MODELS

This message tells the viewer to reload all textures / models in the active effect.

RM_VIEW_UPDATE_RENDER_TEXTURE_CONTENTS

This message requests that the active viewer update the contents of a given renderable

texture.

RM_VIEW_UPDATE_ALL

 15

This message gets sent to request that the viewer recreate all rendering related resources.

This is a global graphics update for the active effect.

RM_VIEW_RESET

This message gets sent to request that the viewer resets to default positioning and

orientation.

RM_VIEW_SET_UI_MODE

This message gets sent to change the view’s UI mode (Rotate, Pan, etc).

Note that these viewer related messages can be triggered by any plug-in that wishes to

update the rendering of the active effect.

RM_VIEW_RENDER_SNAPSHOT

This message is sent out to request that the active viewer save the current frame to disk.

Hidden Database Nodes

Database nodes that are normally hidden are:

1. Registry Branches ()

2. Plug-in Data Nodes ()

3. Stream Channels ()

4. Streams ()

5. States ()
6. Shader Constants ()

7. Samplers ()

These nodes are normally added and modified through the various RenderMonkey SDK

interfaces, and do not come with default editors.

Workspace Editor Support

The workspace editor is a dock-able window usually positioned on the left of the main

interface containing a tabbed tree control which provides a high level view of the effect

database.

This editor can be used to access all elements, or nodes, in the workspace. The individual

effects can be grouped by their common attributes in the workspace as seen fit by the user

(either by rendered effects style, or by the fallback paths, or by rendering API).

 16

There are normally two tabs in the workspace editor: The Effect tab () and the Art tab

(). The Effect tab () is used to view and modify the entire workspace – with all

variable and pass nodes visible. The Art tab () is used to view only the artist-editable

variables that are present in the workspace. The Art tab will only allow the user to edit

artist-editable nodes, without the ability to add, delete, rename, etc. This functionality

allows the programmers to develop the full effect and then allow the artists to modify the

effect’s rendering output without worrying about accidentally modifying the effect’s

contents.

The workspace editor also contains a normally hidden tab called the Debug tab ().

Invoked, or revoked, through the IRmApplication interface function SetDebugMode(…),
the Debug tab will show all workspace nodes, including the normally hidden nodes.

Example:

Registry Branches

 17

Registry Branch nodes () are used to add local or global plug-in specific data into the

workspace. Normally, these nodes are used as root nodes of various child nodes holding

plug-in specific data. The local or global registry branches are available through the

IRmRegistryManager interface, using the appropriate
GetLocalRegistryRootPlugInBranch()

or GetGlobalRegistryRootPlugInBranch() functions. The plug-in should

never modify or change registry branches (or associated child nodes) it doesn’t own, as to

not cause unpredictable behavior. Normally, a plug-in will add a single registry branch

(named after the plug-in) to the root plug-in branch obtained from the

IRmRegistryManager. Working from that child branch, the plug-in is then free to

modify the child nodes as necessary.

Registry Branch nodes may contain the following child nodes:

1. Registry Branches
2. Integer Variables
3. / Boolean Variables

4. Float Variables
5. Notes

Plug-in Data Nodes

Plug-in Data nodes () are used in conjunction with generator plug-ins, to store the data

required to regenerate the node data upon request. Normally, these nodes are used as root

nodes of various child nodes holding plug-in specific data. The plug-in should never

modify or change plug-in data nodes (or associated child nodes) it doesn’t own, as to not

cause unpredictable behavior. A plug-in may add a plug-in data node (named after the

plug-in) to the appropriate node, but only one plug-in data node is allowed for any given

node. The plug-in data node must supply the appropriate RmPlugInID to the node to
ensure the associated generator plug-in will receive the call to re-generate the node data

when necessary through the IRmGeneratorPlugIn:: GenerateData(…)
function.

Registry Branch nodes may contain the following child nodes:

1. Integer Variables
2. / Boolean Variables

3. Float Variables
4. Notes

Stream Channel and Stream Nodes

Stream Channel () and Stream () nodes are directly manipulated through the standard

stream mapping editor. The stream () node is only found as a child of the stream mapping

node (). The stream channel node () is only allowed as a child of a stream node(). It

is recommended that these nodes are not manipulated by another plug-in. The only case

 18

where these nodes should be directly manipulated is if a node has become corrupted, and is

not accessible through the stream mapping editor. In this case, the corrupted node may be

deleted through use of the workspace editor debug tab.

State Nodes

State nodes () are directly manipulated through the render state or texture state editors.

State nodes () are only allowed as children of a render state block (), or a texture object

(). It is recommended that these nodes are not manipulated by another plug-in. The only

case where these nodes should be directly manipulated is if a node has become corrupted,

and is not accessible through the appropriate state editor. In this case, the corrupted node

may be deleted through use of the workspace editor debug tab.

Shader Constants

Shader Constants () are added through two methods. The first method is indirectly by the

user, when a variable node (/ / / / / / / / /) is dropped onto a shader (/)

node in the workspace editor. The second method is through the preview windows during

compile operations. Shader constants () are only allowed as children of shader nodes

(/). The only case where these nodes should be directly manipulated is if a node has

become corrupted, and is not removed when the affected shader is compiled. In this case,

the corrupted node may be deleted through use of the workspace editor debug tab.

If a shader constant is invalid, it will be shown with a slash () through it. Example: .

The cause of this is if the shader constant cannot find the associated variable node it is

associated with.

Sampler Nodes

Sampler Nodes () are added through two methods. The first method is indirectly by the

user, when a texture object node () is dropped onto a shader (/) node in the

workspace editor. The second method is through the preview windows during compile

operations. Sampler nodes () are only allowed as children of shader nodes (/). The

only case where these nodes should be directly manipulated is if a node has become

corrupted, and is not removed when the affected shader is compiled. In this case, the

corrupted node may be deleted through use of the workspace editor debug tab.

If a sampler node is invalid, it will be shown with a slash () through it. Example: .

The cause of this is if the sampler node cannot find the associated texture object node it is

associated with.

 19

User Interaction

Window Creation and Management in RenderMonkey

The following window creation methods exist to ensure compatibility between the Win32 /

MFC APIs, as well as compatibility between compiler versions.

When a window is registered with the application through

IRmApplication::RegisterWindow(…), the plug-in must be sure to un-register

the same window upon destruction with the

IRmApplication::UnregisterWindow(…) function.

Note that multiple window registrations are sometimes required to ensure the proper

handling of nested window message routing. For examples of all window types, please

refer to the SDK projects. These projects illustrate the proper methods to properly manage

plug-in windows of every type.

Please refer to SDK/Include/Core/RmApplication.h for details on the

IRmApplication::RegisterWindow / UnregisterWindow functions.

Please note that it is up to the plug-in to take appropriate action when a node associated

with a window is modified or deleted. The plug-in must handle the appropriate measures

such as closing an open window, updating any affected data, etc.

The following window types are supported:

Dialogs

To provide proper handling of dialog messages, the plug-in must register the created dialog

window using the IRmApplication::RegisterWindow(…) function. This will ensure the

appropriate window messages get routed to the plug-in created dialog. The registration of

dialogs applies to both stand alone dialog windows, as well as dialogs created as children

with docking and MDI child windows.

Docking Windows

The following functions are used when creating and managing docking windows:

a. IRmApplication::CreateDockingWindow

 20

This function will create a docking window frame that a plug-in can then attach

to.

b. IRmApplication::FindDockingWindow

This function will search for an existing docking window (which may be in a

hidden state). If the function successfully returns a window handle, the plug-in

is to attach to the existing window, instead of creating a new docking window.

c. IRmApplication::GetAvailableDockingWindowID

If a docking window has not been created, the plug-in must request a docking

window ID from the application. This ID is to be saved by the plug-in, as this

ID will be used when loading a workspace to ask the plug-in to re-create the

window when required. The application asks for this creation through the

RM_MSG_DOCKPANE_CREATED application message.

d. IRmApplication::ShowDockWindow

If a plug-in wishes to close the docking window, or temporarily hide the

docking window, calling this function will cause the docking window to

disappear (or reappear, if called upon).

As with dialogs, the window attached to a docking frame must register itself to

RenderMonkey through the IRmApplication::RegisterWindow(…)
function.

Standard procedure for managing docking windows is as follows:

1. If creating a new docking window, the plug-in must store the returned ID from the

IRmApplication::GetAvailableDockingWindowID(…) function. This
ID will be used in all subsequent management of the created window.

2. If the plug-in receives an application message RM_MSG_DOCKPANE_CREATED, and
its stored ID matches that passed in the message, it is up to the plug-in to create the

associated window and attached it to the already created docking frame.

3. If the plug-in has a stored ID already, and wishes to activate the associated window, it

should first call IRmApplication::FindDockingWindow(…) to check if the
docking frame exists already in a hidden state. If it does not yet exist, then a call to

IRmApplication::CreateDockingWindow(…) will create a docking frame

with the desired ID.

4. Destruction of a docking window is done through a call to

IRmApplication::ShowDockWindow(…). The application will handle the
appropriate destruction / hiding of the associated docking frame.

 21

The docking frame ID’s are important! Proper management of the ID’s is a must for

complete docking frame handling. Please refer to the docking editor SDK projects for

examples on managing docking windows. Please note that the docking frame must be

registered as well as any attached child windows such as dialogs.

MDI Child Windows

Calling IRmApplication::CreateMDIChildFrame(…) will create a child MDI

frame that the plug-in can use to attach its own windows to. Minimally, the plug-in must

register the returned MDI child frame with the application, and un-register the same handle

upon destruction. With MDI windows, the plug-in must be sure to use the appropriate

window messages when creating (WM_MDIACTIVATE) or destroying (WM_MDIDESTROY)
the returned MDI child frame.

Undo / Redo Operations

RenderMonkey allows developers create their own complex undoable operations. These

operations can be nested, and will be fully managed by RenderMonkey once added to the

undo stack.

To start making an undo operation, or to nest an additional undo operation within an

existing operation, call IRmApplication::StartUndoMaking(…). Once the
undoable operation has been completed, calling

IRmApplication::EndUndoMaking() will finish wrapping the undo operation

initiated by the innermost call to IRmApplication::StartUndoMaking(…). Each

call to IRmApplication::StartUndoMaking(…) must have a companion

IRmApplication::EndUndoMaking() to close the scope at each nesting level.

RenderMonkey supplies the following undo operations by default:

RmAddNodeUndoOp

This undo operation will handle the undoing and redoing of adding a new node to the

database. Push an instance of this class onto the undo stack after the new node is added to

the database.

RmUpdateNodeUndoOp

This undo operation will handle the undoing and redoing of a general node update within

the database. Push an instance of this class onto the undo stack before the node is update in

the database.

RmRenameNodeUndoOp

 22

This undo operation will handle the undoing and redoing of a node name change within the

database. Push an instance of this class onto the undo stack before the node name has

actually changed within the database.

RmDeleteNodeUndoOp

This undo operation will handle the undoing and redoing of a node deletion within the

database. Push an instance of this class onto the undo stack after the node if removed form

the database, but before the node is actually deleted from memory.

RmChangeActiveEffectUndoOp

This undo operation will handle the undoing and redoing the changing of the active effect.

Push an instance of this class onto the undo stack either before or after the active effect has

been changed.

RmSemanticChangeUndoOp

This undo operation will handle the undoing and redoing the changing of the predefined

variable semantic. Push an instance of this class onto the undo stack before the variable

semantic has changed. The new semantic must be provided upon construction.

RmModelOrientationChangeUndoOp

This undo operation will handle the undoing and redoing of a model orientation change.

Push an instance of this class onto the undo stack before the orientation has changed. The

new orientation must be provided upon construction.

RmTextureOriginChangeUndoOp

This undo operation will handle the undoing and redoing of a texture origin change. Push

an instance of this class onto the undo stack before the origin has changed. The new origin

must be provided upon construction.

Custom Undo Operation Creation

To create a custom undoable operation, derive the appropriate class from the RmUndoOp
base class, and pass an instance of that class as the parameter to the

IRmApplication::StartUndoMaking(…) function. Overriding the virtual

functions RmUndoOp::Undo() and RmUndoOp::Redo() to perform the custom

operations.

Application Preferences Management

 23

As indicated in the IRmPlugIn plug-in interface, RenderMonkey provides plug-ins the

ability to create an application property page. These property pages are available through

the main menu, by selecting Edit->Preferences. The associated data can be stored in the

application registry file. To gain access to the application registry, use the

IRmRegistryManager interface. This interface is available through the

IRmApplication interface using the GetRegistryManager() method. Once the

appropriate registry node (RmRegistryBranch) has been attained, normal node

transactions can be used to save the related data.

 24

Plug-in Management

Upon the application startup, all plug-in DLL’s are loaded from the \plugins directory, and

stored internally. All plug-ins are managed according to their type, and will be

automatically associated with the appropriate nodes through the workspace tree context

menu.

The user can create multiple plug-ins (editors, generators, etc.) for the same node type. The

application will simply provide the appropriate list when called upon to do so.

Supported Plug-in Types

IRmPlugIn

 IRmEditorPlugIn

IRmImporterPlugIn

IRmExporterPlugIn

IRmGeometryLoaderPlugIn

IRmTextureLoaderPlugIn

IRmGeneratorPlugIn

IRmPlugIn

Generic RenderMonkey plug-in interface designed to receive main communication

messages from the main application and to specify a property page dialog for main

application preferences. A creator of this plug-in type must specify

RM_PLUGINTYPE_GENERIC as the plug-in type value in the plug-in description.

IRmEditorPlugIn

A node editor plug-in. This plug-in is used by the main application to edit nodes supported

 25

by this plug-in. Use plug-in description to specify which nodes can be edited by this plug-

in in the workspace. The plug-in must return RM_PLUGINTYPE_EDITOR in its plug-in
description structure.

IRmImporterPlugIn

A plug-in implementing this interface is used by the main application to import data from

external formats into the run-time database. An importer plug-in must use

RM_PLUGINTYPE_IMPORTER in its plug-in description structure.

IRmExporterPlugIn

A plug-in implementing this interface is used by the main application to export data from

the run-time database into an external format. An exporter plug-in must use

RM_PLUGINTYPE_EXPORTER in its plug-in description structure.

IRmGeometryLoaderPlugIn

This plug-in type is used by the main application to import geometry data from a supported

file format into RenderMonkey model data node. The plug-in must use

RM_PLUGINTYPE_GEOMETRY_LOADER in its plug-in data description structure.

IRmTextureLoaderPlugIn:

This plug-in type is used by the main application to import texture data from a supported

file format into RenderMonkey texture data node. The plug-in must use

RM_PLUGINTYPE_TEXTURE_LOADER in its plug-in data description structure.

IRmGeneratorPlugIn

This plug-in type is used by the main application to generate data for a RenderMonkey

node. The plug-in must use RM_PLUGINTYPE_GENERATOR in its plug-in data

description structure.

Please refer to the SDK example projects for plug-in implementation examples.

Plug-in Description Structure

One of the key components of a plug-in is the plug-in description structure. When a plug-

in is loaded into the application, the application will extract the necessary information from

this structure, allowing the appropriate node and type associations to take place.

 26

Elements of the plug-in description structure include:

1. Plug-in type
2. Plug-in ID
3. A list of supported node types
4. SDK version
5. Supported rendering API (DX, OpenGL, API-agnostic)
6. Plug-in name

The following plug-in types are supported:

1. Generic Plug-in
2. Editor Plug-in
3. Importer Plug-in

4. Exporter Plug-in
5. Geometry Loader Plug-in

6. Texture Loader Plug-in
7. Generator Plug-in

Plug-in Interfaces

Generic Plug-in Interface

A generic plug-in is indicated by setting the plug-in type (in the plug-in description struct)

to RM_PLUGINTYPE_GENERIC. This plug-in, as do all plug-in types, must implement

the IRmPlugIn interface.

The IRmPlugIn interface provides the basic mechanism for initialization / un-

initialization, as well as the method for receiving of messages from the application. It also

gives the plug-in the ability to add its own property page to the application preferences

property dialog. A plug-in may choose to act upon an individual node, or upon a group of

nodes.

The IRmPlugIn interface contains the following entry points:

• Init / Uninitialize

These functions are to provide plug-in initialization / un-initialization.

• GetPlugInDescription

This function is to retrieve the plug-in description structure.

• MessageHandler

 27

This function it to provide application message processing.

• HadPropertyDlg / AddPropertyDlg

These functions provide the ability to add a plug-in preference page in the application

preferences dialog.

Editor Plug-in Interface

An editor plug-in is meant to provide an intuitive interface where the user can edit a single,

or a group or related nodes. Examples of editor plug-ins include the color node editor,

shader editor, and vector editor. An editor plug-in is indicated by setting the plug-in type

(in the plug-in description struct) to RM_PLUGINTYPE_EDITOR. This plug-in must

implement the IRmEditorPlugIn interface, which is derived from the IRmPlugIn
interface.

The IRmEditorPlugIn interface contains the following entry point:

• EditNode

This function is intended to launch the appropriate editor for the appropriate node, or

group of nodes.

Importer Plug-in Interface

An importer plug-in is meant to provide a method to import external data into the

RenderMonkey database. An example of an importer plug-in is the package importer. An

importer plug-in is indicated by setting the plug-in type (in the plug-in description struct) to

RM_PLUGINTYPE_IMPORTER. This plug-in must implement the

IRmImporterPlugIn interface, which is derived from the IRmPlugIn interface.

Importer plug-ins can be used to parse custom engine scripts or data files, providing a

mechanism where different custom datasets can be easily transferred across to work within

RenderMonkey.

The IRmImporterPlugIn interface contains the following entry point:

• ImportNode

This function is intended to launch the appropriate importer, allowing the user to select

the external data source intended for conversion and eventual use within

RenderMonkey.

 28

Exporter Plug-in Interface

An exporter plug-in is meant to provide a method to export internal data from the

RenderMonkey database for possible use within another application. An example of

exporter plug-ins are the package importer, and the fx exporter. An exporter plug-in is

indicated by setting the plug-in type (in the plug-in description struct) to

RM_PLUGINTYPE_EXPORTER. This plug-in must implement the

IRmExporterPlugIn interface, which is derived from the IRmPlugIn interface.

The IRmExporterPlugIn interface contains the following entry point:

• ExportNode

This function is intended to launch the appropriate exporter, allowing the user to

convert internal RenderMonkey data into an external format for use outside of

RenderMonkey.

Geometry Loader Plug-in Interface

A geometry loader plug-in is meant to provide a method to load external model files and

convert the data into a RenderMonkey compatible format. Examples of geometry loader

plug-ins are 3DS, X, and OBJ file loaders. The loader is invoked whenever a user selects a

file to load geometry for a model node. A geometry loader plug-in is indicated by setting

the plug-in type (in the plug-in description struct) to

RM_PLUGINTYPE_GEOMETRY_LOADER. This plug-in must implement the

IRmGeometryLoaderPlugIn interface, which is derived from the IRmPlugIn
interface.

The IRmGeometryLoaderPlugIn interface contains the following entry points:

• GetSupportedExtensions

This method is used to query a geometry loader plug-in about the file types that it

supports for importing geometry models.

• CanLoadGeometry

This method lets the main application know whether the plug-in that implements the

geometry loader interface can load a specified file described by the given file name.

• LoadGeometry

Load geometry object(s) from the given.

 29

Texture Loader Plug-in Interface

A texture loader plug-in is meant to provide a method to load external texture files and

convert the data into a RenderMonkey compatible format. An example of a texture loader

plug-in is theimage loader. The loader is invoked whenever a user selects a file to load a

texture for a texture node. A texture loader plug-in is indicated by setting the plug-in type

(in the plug-in description struct) to RM_PLUGINTYPE_TEXTURE _LOADER. This

plug-in must implement the IRmTextureLoaderPlugIn interface, which is derived

from the IRmPlugIn interface.

The IRmTextureLoaderPlugIn interface contains the following entry points:

• GetSupportedExtensions

This method is used to query a texture loader plug-in about the file types that it

supports for importing texture files.

• CanLoadTexture

This method lets the main application know whether the plug-in that implements the

texture loader interface can load a specified file described by the given file name and

texture type.

• LoadGeometry

Called to load a texture from the given file.

Generator Plug-in Interface

A generator plug-in is meant to provide the ability to populate the node database based on

specified parameters in the plug-in. This is to provide a method of procedural geometry or

texture creation. Examples of generator plug-ins include the geometry generator and the

texture generator plug-ins. An generator plug-in is indicated by setting the plug-in type (in

the plug-in description struct) to RM_PLUGINTYPE_GENERATOR. This plug-in must

implement the IRmGeneratorPlugIn interface, which is derived from the

IRmPlugIn interface.

The IRmGeneratorPlugIn interface contains the following entry point:

• GenerateData

This method is called to generate contents for the specified input node.

 30

RmModule and RmModuleManager Helper Classes

Each plug-in can have multiple instances of the actual plug-in associated with various

nodes. For example, if we take the vector editor plug-in, it may have multiple instances

(modules) existing at the same time if the user selected to edit multiple (say, 5) vectors at

the same time. The developer implementing the plug-in may wish to manage individual

instances in any way they choose, however, the RenderMonkey SDK provides a convenient

method of managing these individual modules within a plug-in by using RmModule and

RmModuleManager.

The RmModuleManager class will help manage a group of registered RmModule

derivative classes. Each RmModule derivative class helps organize modules that are

associated with a single, or a group of nodes. For instance, one module may support the

editing of all render state blocks within the same effect. In this case, if the user is using our

editor to edit a render state block, the module manager will search to see if an existing

module is available to handle the editing of that node. If there is no existing module to

handle the editing of that node, the plug-in should then create a new one, otherwise the

module manager will direct the editing of the node to the existing module.

These classes are defined in the SDK header file RmPlugIn.h

 31

Plug-in Project Setup

If the user would like to use the included RenderMonkey SDK MFCUtilities library, which

is useful for GUI development, then the developer must compile and link to the VS8.0

MFC libraries.

Setup for Visual Studio 2005

Requirements

a. RenderMonkey version 1.71 must be installed with the SDK. Make a note of the

directory it is installed into.

b. You must have Visual Studio 2005 installed

Creating a New Project

a. File -> New -> Project

Select “MFC DLL” (if you want to use MFC) or “Win32 Project” otherwise.

 32

Project Settings

a. Project -> Properties

b. Configuration Properties->General Properties

Configuration Type -> “Dynamic Library

Character Set -> “Use Unicode Character Set”

If you want to use MFC,

set Use of MFC to “Use MFC in shared DLL”

c. Configuration Properties->C/C++->General Properties

Additional Include Directories must contain RenderMonkey’s SDK include

directory. (<MyRenderMonkeyInstallDirectory>/SDK/Include). This path can be

an absolute path or a relative path as shown below:

 33

d. Configuration Properties->C/C++->Code Generation Properties

Runtime library must be set to “Multi-threaded Debug DLL” or “Mutli-threaded

DLL” depending on the build configuration selected.

e. Configuration Properties-> C/C++->Language Properties

 34

Treat wchar_t as Built-in type must be set to “No”

Enable Run-Time Type Info must be set to “Yes”

f. Configuration Properties-> Linker->General Properties

Output File must be set to output to RenderMonkey’s plug-ins directory

(<MyRenderMonkeyInstallDirectory>/plugins). This path can be an absolute path

or a relative path as shown below.

Additional Library Directories must include RenderMonkey’s SDK library

(<MyRenderMonkeyInstallDirectory>/SDK/lib). This path can be an absolute path

or a relative path as shown below.

 35

g. Configuration Properties->Linker->Input Properties

Additional Dependencies must include RmCore.lib and RmUtilities.lib. If your

plug-in uses MFC, you should also add RmMFCUtilities.lib.

 36

Project Debugging

Under Configuration Properties -> Debugging,

Set Command to point to RenderMonkey.exe (which is found in directory where you

installed RenderMonkey).

Set Working Directory to RenderMonkey’s installed directory (the same directory as

above).

 37

SDK Feedback

This SDK is provided for the convenience of developers to allow them to extend existing

RenderMonkey framework to suit their needs. Please send us any feedback about this SDK

in regards to the usefulness of its features as well as about completeness of its API. Any

additional feature requests or bug reports are always welcome. We look forward to hearing

from you about the types of plug-ins that you will create and anything else that you may

wish to share with us!

Please send feedback to gputools.support@amd.com

