RenderMonkey SDK Version 1.71

OVERVIEW 3
RENDERMONKEY PLUG-IN ARCHITECTURE PHILOSOPHYuvviiiiiiiieeitiieeeieeeeeeeeeeeeeeeeeeeeseesesneeessenneeesennaees 3
IMPORTANT CHANGES WHEN PORTING EXISTING PLUG-INSooiiiiiiiiiiiie ettt 3

GENERAL 4
GENERATING A RENDERMONKEY PLUG-IN FRAMEWORKcccciiiiiiiiiiiieeeeeiiititeeeeeeeeeeiireeeeeeeeeeeanneeeseeeeeennnes 4
RENDERMONKEY APPLICATION DESIGNccoiiiiuiriiiieeieeiiiteeeeeeeeeeetteeeeeeeeeeetareeeeeeeeestaseeeeeeeeeeeansseeeseeeennnnnes 5
SUPPORTED API AND COMPATIBILITY ...ccceeiieituttieeeeeeeeiitreeeeeeeeeiisseeeeeeeeesiisssseeeeeessssssseseseessesssssesesesssnssnseseens 5

APPLICATION AND SDK LAYOUT 6
SDK LIBRARIESvvviieiieiiiitteeeeeeeeeeetteteeeeeeeeettareeeseeeeeeitsreseseeeeestasssseeeeeeasetasseeeeeeeaatssseseseesaestsrseaeseeeansrraeeeees 7

RINCOFC ...t e e e e e e e e e e e e an 7
RINUIIITEICS ..ot e e e e e e e e e 7
RINME CULITIEIES ...t e e e e e e e e e 7
RIVGTSXULIL ...ttt ettt ettt b e ettt ettt s et e b e b et e eee e et e st et enseeeenes 7
NI B G 1) 5186 5) 2P 7
PLUG-IN DLL ORGANIZATION......c.ceitiiitttrieeeeeeeeitreeeeeeeeeeiisaeeeeeeeeeeesaseeeseeeeseasseseseeseasissssesseseeesirrseseseseennisres 10
RMINTIPIUGINDLLc..oooieiieiiieie ettt ettt ettt ebe bt et e et e et e bt e ebe e e enseenaeeneas 10
RIMGEINUIMPIUZGINS ..ottt ettt ettt b et et e et e b e e e enbeenaeeneas 10
RINGEIPIUGIT ...ttt ettt et s e bt e bt e bt et e st e et e eseeebeenbeenbeenseeneas 10
RINFFEEPIUGINL. ...ttt ettt ettt be b et e st e et e et e ebeenbeenseenseeneas 10
RmUninitializePIUGINDLLcc.cccooiuiiiiiiiieiieee ettt ettt ettt e enaeeneas 10

APPLICATION INTERACTION 11
JaN 23 0 (0FNy B (6) ANl @) 23] OO 11
APPLICATION MESSAGES.......ciittttttteeeteiieieeeeeeeeeeesteeeeeeeeeesaeeeeeeeseestaaeseeeeseasatresteesseasstaesteessenssrrereeeseeanns 11

DATADASE THANSACLIONS ...t e e e e e e e e e e e 11
APPLICAIION STAL......c..ooeeeee ettt ettt ettt ettt 13
SRAAr COMPIIATION ...ttt ettt et nneens 14
VE@WEF PIUGITS..........eeiieiieeie ettt ettt ettt ettt ettt st e st e st e bt e beenbeenbeesaesneesseenneenes 14
HIDDEN DATABASE NODESuvvtiiiiiiiiiitteeeeeeeeeeiiteeeeeeeeeeitaeeeeeeeeeestaaseeeseeeeeeasseseseeeeeassseeeseseeesarseseeeseenninrres 15
WOrkspace EdtOF SUPPOFLc..cceieeiiaei ettt ettt ettt ettt et ssaesneesse e s e 15

USER INTERACTION

PLUG-IN MANAGEMENT

PLUG-IN PROJECT SETUP

SDK FEEDBACK

Registry Branches e
Plug-in Data Nodes B e
Stream Channel & and Stream NOGES O....................c...co.oveveeeeeeeeeeeeoeeeeeeeeeeeeeeeeee e
SEALE INOES ...ttt ettt ettt at et e st et e esb e e st e estesaeesbeenbeenseesseeneeseens
SRAAer CONSIANLS [E............ccoooiiiieie ettt ettt ettt et e et e e beesbeesteestesaeesseeseenseeseeeneanseans
Sampler Nodes oS

WINDOW CREATION AND MANAGEMENT IN RENDERMONKEYcuvuviiiiiiiiiiiieeeeeeeieeiieeeeeeeeeeesnneeeeeesssennnees
DIQIOZS ..ottt n ettt
DOCKING WIRAOWS ...ttt ettt ettt ettt ettt e eneas
DI CRILA WEBAOWS oottt e

UNDO / REDO OPERATIONSooeiuuvieeitreeeeeteeeeeeeeeeeeaeeeeeseseeeseeseensssesessssesaesseeeensseesessessensseeseeesseesensreessnnns

APPLICATION PREFERENCES MANAGEMENTccciuttiiiieeeieiiiteeeeeeeeeeitreeeeeeeeesaaaeeeeeeeeesatseseeeeeensensseseseeeenins

SUPPORTED PLUG-IN TYPES ..ottt
PLUG-IN DESCRIPTION STRUCTUREcoiiiiutiieeetieeeeitteeeeetteeeeeteeeeeteeeeeesaeeeeeaseeeeesseeeeessesseessseseessseeensseeeannns
PLUG-IN INTERFACES ...ociiieiittttiieeeeeeecitteeeeeeeeeetvteeeeeeeasataaseaeeeesaasssssasaeaeaassssssaseeessansssssaseeessassssseseeeseannssres
Generic PIUG-in INIEFFACEccceeviiiiiiiieee ettt
Editor PIUG-in INIETTACE............cceooeeeeeeieeeeee ettt ettt ens
Tmporter PIUG-i11 INTETTACEccoeoueiiiieieeee ettt ettt
Exporter PIUG-in INIETTACEcc.oceeiiiieee ettt en
Geometry Loader PIug-il INIEITACEcoccuiviiiiiiiiiitiieeeeee et
Texture Loader PIUG-in INIETTUCEc.ccccuviiiiiiiiiiiiit ittt
Generator PIUG-in TNIEFJACE.cccouciiiiiiiiiiiiee ettt
RMMODULE AND RMMODULEMANAGER HELPER CLASSEScccccuiiiiiiiiiiiiiiciccieeeiee e

SETUP FOR VISUAL STUDIO 20035coviiiiiiiiiiiiiiiiieiciieccectee et
REOGUITEIENLS ...ttt et e et e e et e e et e e e e ntt e e e ettt e e eansaeeeenneeeenn
CFeAtiNG A INEW PFOJECEooueeiieiiee ettt ettt ettt et ettt enee s
g) =Tel AN Y 21177 < TSP
Project DEDUGZINGcccooieeiieiee ettt ettt ettt

Overview

RenderMonkey Plug-in Architecture Philosophy

The entire RenderMonkey application was created using the supplied Plug-in SDK. The
plug-in architecture allows the development and addition of new features to
RenderMonkey, without the need to re-compile the entire application to include the new
feature. Developers can create custom plug-ins to solve unanticipated problems specific to
their projects, when the need arises. This also allows a convenient method for AMD to
share new RenderMonkey tools in the future.

Important Changes When Porting Existing Plug-Ins

When porting over any existing plug-ins to work with RenderMonkey 1.71, the SDK
version must be up-to-date for the plug-in to get loaded. The developer can use the
following new built-in #defines for this purpose:

RENDERMONKEY SDK CURRENT VERSION MAJOR
RENDERMONKEY SDK CURRENT VERSION MINOR

Plug-Ins without the current SDK version will not get loaded.

General

Generating a RenderMonkey Plug-In Framework

RenderMonkey includes a Plugln Wizard that will generate a Microsoft Visual Studio 2005
project and code for new RenderMonkey plug-in development. The Plugln Wizard is
available from the Help menu within RenderMonkey.

File Edit Miew indow | Help
ANEE, E
|T- o Abouk

Selecting Plugin Wizard will make a dialog box appear that allows the user to choose the
type of plug-in to build (GeometryLoader, Exporter, Importer, Editor, TextureLoader, or
Generator) and to specify the name of the plug-in.

Plugin Wizard §|

PlugIn Tvpe |Geu:umetr~;.-’Lu:uau:Ier j

PlugIn Mame |

Cancel

Using the Plugln Name as a base for the class name, the wizard will generate a project that
contains all the necessary entry points for the selected Plugin Type. The entry points will
also contain code specific to that Plugin Type that provides a framework for the necessary
functionality of that plug-in. Generated plug-in projects are located in the ‘RenderMonkey
1.71\SDK\Projects’ directory. This document, along with comments throughout the code,
will guide the user in understanding the necessary functionality of each entry point to aid in
development of a working custom plug-in.

Compiling the SDK Pluglns will require that the DirectX 9 SDK from February 2007 is
installed on the computer. Installing the DirectX SDK should set the DXSDK DIR
environment variable to the folder that the DirectX SDK was installed to. This variable
must be set to compile the generated plug-ins in Visual Studio.

RenderMonkey Application Design

RenderMonkey is a single document application. This means that only one workspace file
(.rfx) can be open at a time. However, multiple instances of RenderMonkey can be run at
the same time, allowing the transferring of data across separate instances.

All of the necessary data to render an effect is stores in the run-time database. All real-time
changes to the database are managed by the application and propagated to the plug-ins
through the plug-in messaging system. The application will send out Windows-style
messages to the plug-ins message handler, allowing the appropriate behavior to be
implemented by the plug-in itself. Note that all API specific rendering resources exist in
the viewer plug-ins, meaning other plug-ins will have no default access to this specific
data.

The run-time database consists of:

- Effect Group(s)
- Effect(s)
-Pass(es)

- Render State Block
- Pixel Shader
- Vertex Shader
- Model Reference
- StreamMap Reference
- Texture Object(s)

Variables, Models, Textures, and StreamMapping nodes can live at most levels of the
workspace.

Please refer to RMEffect.h for full node definitions, as well as SDK\Docs\html\index.html
for class hierarchy documentation.

Supported APl and Compatibility

The SDK is written in pure C++. RenderMonkey version 1.71 and SDK 1.71 support plug-
in development in Visual Studio 8.0 (2005). Support for Visual Studio 6.0 and Visual
Studio 7.1 (.Net) is no longer available. Developers can create plug-ins using either the
Win32 API, or MFC as they please. Please refer to the sample projects included with the
SDK for examples of both MFC and Win32 plug-ins.

Application and SDK Layout

RenderMonkey will install the following directories:
1. Data

The Data directory stores initialization files pertaining to API specific state
information, parser / keyword information, and XML / DTD information. Generally,
these files will not normally be edited by the user, and the information contained within
is mostly tied to the rendering API’s, as well as the RenderMonkey application itself.
The one file that may be edited by the user is DefaultWorkspace.rfx. This file
determines the default initialization that will accompany a newly added database node
in the workspace. Please refer to the DefaultWorkspace section for a full explanation
on how to use the DefualtWorkspace.rfx file.

2. Examples

The Examples directory is where example workspaces and related files are stored. The
workspaces themselves are stored in the Dx9 / GL2 subdirectories, and the related
texture / model files are all stored in the Media subdirectory.

3. Plugins

The Plugins directory is where the application will look for all available plug-in DLLs
to load upon application startup. Any new plug-in DLL should be placed in this
directory for the application to find.

4. SDK

The SDK directory will contain the necessary components for the creation of new
plugin DLLs. The following subdirectories are included:

a. Docs
The Docs subdirectory contains any SDK related documentation.

b. Examples
The Examples subdirectory contains example plug-in projects for both Visual
Studio 6 and Visual Studio 7.1. There are example projects for most available

plug-in types.

c. Include/ Lib
The Include and Lib subdirectories include the appropriate header (.h) and
library (.1ib) files that may be required for plug-in project development.

d. Projects
The Projects directory contains the plug-in projects that are generated by the
Plug-In Wizard.

e. Wizard
The Wizard subdirectory contains code samples used by the plug-in wizard.

SDK Libraries

The following libraries (.lib) with associated headers (.h) are included for plug-in
development:

RmCore

This library contains the node database definitions, plug-in interfaces, application interface,
various manages interfaces, as well as custom classes. This is the main library that must be
used with all plug-ins.

RmuUtilities

This library contains many useful utilities such as stl-like list and array classes, a string
handling class, window flicker reducing utilities, window message hook utilities, dynamic
control placement utilities, etc. This library can optionally be included for plug-in
development.

RmMFCUtilities

This library contains many useful MFC based utilities such as custom dialog controls and
widgets, an iconic menu class, etc. This library can optionally be included for plug-in
development.

RmGrfxUtil

This library contains texture image creation and management utilities, image conversion
utilities, and API specific device utilities. This library can optionally be included for plug-
in development.

SDK Includes

RmApplication.h

Provides the definition for the TRmApplication interface. The IRmApplication
interface, which is globally available through the getRmApp () function, provides the
main access point for the runtime database as well as the user interface.

RmArray.h

Provides a templated RmArray class interface. Created to eliminate the need for an STL
implementation, this general interface provides standard array class functionality.

RmCore.h

Includes all core library headers in one convenient header include file.

RmDefines.h

Contains RenderMonkey used #defines. This includes plug-in Message ID’s, and
reserved window control ID’s, and other commonly used #defines. Refer to this file for
parameter details of RenderMonkey plug-in messages.

RmEffect.h:

Contains definitions of the entire runtime database node structure, and related helper
definitions. Refer to this file for a complete description of each node type’s class definition.

RmFile.h
Contains file helper functions to open / close a file.

RmLinkedList.h

Contains a templated RmLinkedList class interface. Created to eliminate the need for
an STL implementation, this general interface provides standard linked list class
functionality.

RmMath.h

Contains basic 3D math helper (RmVector, RmBoundBox and many more)

RmMatrix.h

Contains RmMatrix4x4 helper class

RmMesh.h

Contains mesh classes to help a programmer to keep information about geometry in a
nicely packed manner.

RmPlugin.h

This file contains declarations for all supported plug-in interfaces for creation of
RenderMonkey plug-ins.

RmRegistryManager.h

IRmRegistryManager interface definition. The registry manager is used to manage
RenderMonkey application registry (also called 'global registry') as well as workspace-
specific registry branches. Each registry branch can store information about either
application settings (in global registry) or about plug-ins (for example) or specific window
information (window placement information, for example).

RmStateManager.h

IRmStateManager interface definition. The state manager is used to manage the
available render states, texture states, etc.

RmString.h

Contains RmString template interface definition. This class provides a convenient
interface for common string manipulation routines.

RmString.inl

Contains RmSt ring template interface implementation.

RmStringToPtr.h

Contains RmStringToPtrMap class definition. Created to eliminate the need for an
STL implementation, this general interface provides the commonly used mapping from a
string to a pointer.

RmTypes.h

Contains commonly used structure definitions, enumerations, etc. This file also contains
the RenderMonkey recognized string versions of all runtime database node types.

RmUndo.h

Contains helper class definitions for Undo / Redo operations. These classes are used in
conjunction with TRmApplication: :StartUndoMaking and

IRmApplication: :EndUndoMaking to perform undoable runtime database node
manipulations.

RmVariableManager.h

Contains IVariableManager interface definition. This interface manages lists of
variables of specific types (such as RenderMonkey’ predefined variables).

RmXMLManager.h

Contains TRmXMLManager interface definition. This interface is used to load / save
RenderMonkey xml (.rfx) files, and query the xml data for RenderMonkey specific node
data.

Plug-in DLL Organization

A plug-in DLL can contain one or more plug-ins. Each plug-in DLL must implement the
following entry points:

RmInitPluginDLL

This function will get called to initialize and perform any required setup for the actual
DLL. This is a good place to instantiate all plug-in instances.

RmGetNumPlugins

This function returns the number of plug-ins implemented in a particular DLL.

RmGetPlugin

This function is called to retrieve a particular plug-in from the DLL, based on a zero based
index.

RmFreePlugin

This function is called to free a particular plug-in from a DLL.

RmUninitializePlugIinDLL

This function will get called before the DLL is unloaded by the application.

10

Application Interaction

All necessary data to render an effect is stored in the node database. This includes the
effect nodes, pass nodes, model nodes, etc. RenderMonkey enforces node rules to ensure
the database is maintained in a valid state. For example, only one vertex shader (or
program) is allowed in each pass, only one model reference if allowed in each pass, etc.
For further information regarding the node rules, please refer to the XML DTD, which
largely mirrors the rules RenderMonkey will enforce. Also, the Workspace Editor section
on the RenderMonkey user documentation also will state many of the rules surrounding
node placement.

Application Access

The IRmApplication interface is accessible from any plug-in through the global function
getRmApp () . The IRmApplication interface is the main entry point for window
creation and management. It allows users to clear output window text and to specify new
text to output, and contains an instance of the current workspace (node database). Through
the interface, all node transactions can be performed, including the launching of node
editors.

IRmApplication also provides access to various manager interfaces. These manager
interfaces include the application registry manager, predefined variable manager, XML
manager, etc.

Application Messages

All application events (non-Windows) and all node database transactions are propagated to
the plug-ins by RenderMonkey messages. All plug-ins must support a message handler to
process these messages. Please refer to the plug-in interface descriptions for details
regarding this handler. Any plug-in can send out a message at any point by notifying the
application through the IRmApplication::BroadcastMessage (..) function.
Please refer to the SDK file RmDefines.h for a full listing of messages and supporting
message data.

Supported Transactions and Application Messages

Database Transactions

RM MSG_NODE_UPDATED

This message will be sent when a node has experienced a structural change. This structural
change could be relevant to the node itself, or any of the children. Plug-ins should

11

recalculate any information that may be affected by this node or any of its children. It is
possible that child nodes either no longer exist, or have been added to the node itself.

RM MSG_NODE_DELETED

This message is sent to inform the plug-ins that a node is getting deleted from the database.
At the point the message is broadcast, the node has been removed from the database, but
the heritage information is still contained within the removed node. This allows plug-ins to
react accordingly before the node is actually deleted from memory.
RM_MSG_NODE_ADDED

This message gets sent out when a node has been added to the database. The added node
may have accompanying child nodes, whose additions will not be notified through similar
messages. The plug-ins are expected to handle these child nodes accordingly.

RM MSG_NODE_NAME CHANGED

This message gets sent out when a node name has changed. The message will contain the
old node name.

RM _MSG_NODE_VALUE CHANGED

This message is sent out to notify plug-ins of a simple value change within a node.
Normally, value change messages are associated with numeric variable nodes.

RM MSG _VARIABLE SEMANTIC CHANGED

This message is sent out to notify plug-ins of a simple value change within a node.
Normally, value change messages are associated with numeric variable nodes.

RM MSG MODEL ORIENTATION CHANGED

This message is sent out to notify plug-ins that a model orientation has changed, and users
of the model should reload their data.

RM MSG_TEXTURE ORIGIN CHANGED

This message is sent out to notify plug-ins that a texture origin has changed, and users of
the texture should reload their data.

RM MSG_BEGIN MESSAGE BLOCK / RM MSG END MESSAGE BLOCK
This message is sent out to notify plug-ins that a block of related messages are about to be

sent out. This is typically done then multiple changes are taking place at the same time,
such as node drag and drop, etc.

12

Please note that with most node transactions, the plug-in must send out an application
message to notify all plug-ins about the database change. This is done through the
IRmApplication: :BroadcastMessage function. This is necessary to give all
plug-ins a chance to update any pointers, close editors, etc. By not informing plug-ins of
database changes, RenderMonkey plug-ins will become unstable.

Application State

RM_MSG APP FILE NEW

Sent out to all plug-ins to notify them that a new workspace was created.
RM_MSG APP FILE OPEN

Sent out to all open modules to notify them that a file was opened.

RM MSG APP FILE OPEN BEGIN / RM MSG APP FILE OPEN COMPLETE

Sent out to all open modules to notify them that a file open operation has started /
completed.

RM MSG_APP QUERY TO SAVE DATA

Sent out to all open modules before RenderMonkey saves the workspace. This is to ensure
that all of the plug-ins propagate any data that they may have into the run-time database
before it's saved out to XML. The plug-ins may query the user at this point to whether the
data should, or should not, get saved.

RM _MSG_APP SAVE DATA

Sent out to all plug-ins before RenderMonkey saves the workspace to make sure that the
plug-ins propagate any data that they may have into the run-time database before it's saved
out to XML. The plus-ins should not query the user whether the data should be saved, but
just propagate it directly.

RM _MSG APP SAVE DATA BEGIN / RM MSG APP SAVE DATA COMPLETE
The saving data operation has started / finished.

RM_MSG_APP FILE CLOSE

Sent out to all plug-ins to notify them that a workspace file is about to be closed.

RM MSG APP_FILE CLOSE BEGIN / RM MSG APP FILE CLOSE COMPLETE

13

Sent out to all plug-ins to notify them that a file is about to be closed and the operation has
started / finished.

RM_MSG APP CLOSING
Sent out to all open modules to notify them that the application is about to close.
RM _MSG APP SILENT BEGIN / RM MSG APP SILENT COMPLETE

Sent out to all open modules to notify them that the application may not / may display any
dialog boxes that block, waiting on user input.

Shader Compilation

RM VIEW COMPILE SHADERS

This message forces compilation of all modified ("dirty") shaders, usually in the active
effect.

RM VIEW COMPILE SHADERS BEGIN /
RM VIEW COMPILE SHADERS COMPLETE

This message notifies the plug-ins that shader compilation has started / finished.

Viewer Plug-ins

RM VIEW CHANGE ACTIVE EFFECT

This message notifies the viewer plug-in that the active effect has changed. The viewer
plug-in should prepare all appropriate resources and begin rendering the new active effect.

RM_VIEW UPDATE TEXTURES / RM VIEW UPDATE MODELS
This message tells the viewer to reload all textures / models in the active effect.
RM _VIEW UPDATE RENDER TEXTURE CONTENTS

This message requests that the active viewer update the contents of a given renderable
texture.

RM VIEW UPDATE ALL

14

This message gets sent to request that the viewer recreate all rendering related resources.
This is a global graphics update for the active effect.

RM VIEW RESET

This message gets sent to request that the viewer resets to default positioning and
orientation.

RM VIEW SET UI MODE
This message gets sent to change the view’s Ul mode (Rotate, Pan, etc).

Note that these viewer related messages can be triggered by any plug-in that wishes to
update the rendering of the active effect.

RM VIEW RENDER SNAPSHOT

This message is sent out to request that the active viewer save the current frame to disk.

Hidden Database Nodes

Database nodes that are normally hidden are:

Registry Branches (i)
Plug-in Data Nodes ()
Stream Channels (&)
Streams (m)

States ()

Shader Constants (&)
Samplers (<£)

Nk =

These nodes are normally added and modified through the various RenderMonkey SDK
interfaces, and do not come with default editors.

Workspace Editor Support

The workspace editor is a dock-able window usually positioned on the left of the main
interface containing a tabbed tree control which provides a high level view of the effect
database.

This editor can be used to access all elements, or nodes, in the workspace. The individual

effects can be grouped by their common attributes in the workspace as seen fit by the user
(either by rendered effects style, or by the fallback paths, or by rendering API).

15

There are normally two tabs in the workspace editor: The Effect tab () and the Art tab
(). The Effect tab () is used to view and modify the entire workspace — with all
variable and pass nodes visible. The A7t tab () is used to view only the artist-editable
variables that are present in the workspace. The Art tab will only allow the user to edit
artist-editable nodes, without the ability to add, delete, rename, etc. This functionality
allows the programmers to develop the full effect and then allow the artists to modify the
effect’s rendering output without worrying about accidentally modifying the effect’s
contents.

The workspace editor also contains a normally hidden tab called the Debug tab (ED).
Invoked, or revoked, through the IRmApplication interface function Set DebugMode (...),
the Debug tab will show all workspace nodes, including the normally hidden nodes.

Example:

Workspace B |

El--' Effect Workspace
=l RM_REGISTRY
=g RM_LocaL
- WOoRKSPACE
- Jg RM_PLUSIN
----- E= Header
----- % Description
EI@ Skream Mapping
=~ O Stream 0
‘P Position_D
o Screendlignedfuad
=423 Procedural Texturing
El@ Procedurally Generated Gradient Texture
B view_proj_matrix
E procedurally generated kexture
@ Stream Mapping

=P Pass 0
Model
#-F vertex Shader
2% Pixel Shadsr
Eﬁ] Texture
- B procedurally generated texture
. . D3DSAMP_ADDRESSU
----- = D3aDsaAMP_ADDRESSY
-+ D3DSAMP_MINFILTER
-+ D3DSAMP_MAGFILTER

'F Skream Mapping

"I Effect] @ At PR Debug |

Registry Branches

16

Registry Branch nodes () are used to add local or global plug-in specific data into the
workspace. Normally, these nodes are used as root nodes of various child nodes holding
plug-in specific data. The local or global registry branches are available through the
IRmRegistryManager interface, using the appropriate
GetLocalRegistryRootPlugInBranch ()

or GetGlobalRegistryRootPlugInBranch () functions. The plug-in should
never modify or change registry branches (or associated child nodes) it doesn’t own, as to
not cause unpredictable behavior. Normally, a plug-in will add a single registry branch
(named after the plug-in) to the root plug-in branch obtained from the
IRmRegistryManager. Working from that child branch, the plug-in is then free to
modify the child nodes as necessary.

Registry Branch nodes may contain the following child nodes:

1. Registry Branches

2. Integer Variables

3. /o/t Boolean Variables
4. Float Variables

5. Notes

Plug-in Data Nodes

Plug-in Data nodes (W) are used in conjunction with generator plug-ins, to store the data
required to regenerate the node data upon request. Normally, these nodes are used as root
nodes of various child nodes holding plug-in specific data. The plug-in should never
modify or change plug-in data nodes (or associated child nodes) it doesn’t own, as to not
cause unpredictable behavior. A plug-in may add a plug-in data node (named after the
plug-in) to the appropriate node, but only one plug-in data node is allowed for any given
node. The plug-in data node must supply the appropriate RmP1ugInID to the node to
ensure the associated generator plug-in will receive the call to re-generate the node data
when necessary through the IRmGeneratorPlugIn:: GenerateData (..)

function.

Registry Branch nodes may contain the following child nodes:

1. Integer Variables

2. /v1 Boolean Variables
3. Float Variables

4. Notes

Stream Channel # and Stream Nodes o

Stream Channel (&) and Stream (@) nodes are directly manipulated through the standard
stream mapping editor. The stream (m) node is only found as a child of the stream mapping

node (@). The stream channel node (&) is only allowed as a child of a stream node(m). It
is recommended that these nodes are not manipulated by another plug-in. The only case

17

where these nodes should be directly manipulated is if a node has become corrupted, and is
not accessible through the stream mapping editor. In this case, the corrupted node may be
deleted through use of the workspace editor debug tab.

State Nodes .

State nodes (») are directly manipulated through the render state or texture state editors.
State nodes (+) are only allowed as children of a render state block ([Fy), or a texture object
(ﬁ]). It is recommended that these nodes are not manipulated by another plug-in. The only
case where these nodes should be directly manipulated is if a node has become corrupted,
and is not accessible through the appropriate state editor. In this case, the corrupted node
may be deleted through use of the workspace editor debug tab.

Shader Constants =

Shader Constants (&) are added through two methods. The first method is indirectly by the
user, when a variable node (o/t/I1/E)/E)/ B/ L1/ [/11 /m0) is dropped onto a shader (/&)
node in the workspace editor. The second method is through the preview windows during
compile operations. Shader constants (&) are only allowed as children of shader nodes
(B/8). The only case where these nodes should be directly manipulated is if a node has
become corrupted, and is not removed when the affected shader is compiled. In this case,

the corrupted node may be deleted through use of the workspace editor debug tab.

If a shader constant is invalid, it will be shown with a slash (\) through it. Example: =,
The cause of this is if the shader constant cannot find the associated variable node it is
associated with.

Sampler Nodes &

Sampler Nodes (<) are added through two methods. The first method is indirectly by the
user, when a texture object node (‘Bl) is dropped onto a shader (E/8) node in the
workspace editor. The second method is through the preview windows during compile
operations. Sampler nodes (&) are only allowed as children of shader nodes (ﬂ/ﬁ). The
only case where these nodes should be directly manipulated is if a node has become
corrupted, and is not removed when the affected shader is compiled. In this case, the
corrupted node may be deleted through use of the workspace editor debug tab.

If a sampler node is invalid, it will be shown with a slash (\) through it. Example:x.
The cause of this is if the sampler node cannot find the associated texture object node it is
associated with.

18

User Interaction

Window Creation and Management in RenderMonkey

The following window creation methods exist to ensure compatibility between the Win32 /
MFC APIs, as well as compatibility between compiler versions.

When a window is registered with the application through
IRmApplication: :RegisterWindow (..), the plug-in must be sure to un-register
the same window upon destruction with the

IRmApplication: :UnregisterWindow (..) function.

Note that multiple window registrations are sometimes required to ensure the proper
handling of nested window message routing. For examples of all window types, please
refer to the SDK projects. These projects illustrate the proper methods to properly manage
plug-in windows of every type.

Please refer to SDK/Include/Core/RmApplication.h for details on the
IRmApplication: :RegisterWindow/UnregisterWindow functions.

Please note that it is up to the plug-in to take appropriate action when a node associated
with a window is modified or deleted. The plug-in must handle the appropriate measures

such as closing an open window, updating any affected data, etc.

The following window types are supported:

Dialogs

To provide proper handling of dialog messages, the plug-in must register the created dialog
window using the IRmApplication::RegisterWindow(...) function. This will ensure the
appropriate window messages get routed to the plug-in created dialog. The registration of
dialogs applies to both stand alone dialog windows, as well as dialogs created as children
with docking and MDI child windows.

Docking Windows

The following functions are used when creating and managing docking windows:

a. IRmApplication::CreateDockingWindow

19

This function will create a docking window frame that a plug-in can then attach
to.

b. IRmApplication::FindDockingWindow

This function will search for an existing docking window (which may be in a
hidden state). If the function successfully returns a window handle, the plug-in
is to attach to the existing window, instead of creating a new docking window.

c. IRmApplication::GetAvailableDockingWindowID

If a docking window has not been created, the plug-in must request a docking
window ID from the application. This ID is to be saved by the plug-in, as this
ID will be used when loading a workspace to ask the plug-in to re-create the
window when required. The application asks for this creation through the
RM MSG DOCKPANE CREATED application message.

d. IRmApplication::ShowDockWindow

If a plug-in wishes to close the docking window, or temporarily hide the
docking window, calling this function will cause the docking window to
disappear (or reappear, if called upon).

As with dialogs, the window attached to a docking frame must register itself to
RenderMonkey through the IRmApplication::RegisterWindow (...)
function.

Standard procedure for managing docking windows is as follows:

1.

If creating a new docking window, the plug-in must store the returned ID from the
IRmApplication: :GetAvailableDockingWindowID(..) function. This
ID will be used in all subsequent management of the created window.

If the plug-in receives an application message RM_MSG DOCKPANE CREATED, and
its stored ID matches that passed in the message, it is up to the plug-in to create the
associated window and attached it to the already created docking frame.

If the plug-in has a stored ID already, and wishes to activate the associated window, it
should first call IRmApplication: :FindDockingWindow (..) to check if the
docking frame exists already in a hidden state. If it does not yet exist, then a call to
IRmApplication: :CreateDockingWindow (..) will create a docking frame
with the desired ID.

Destruction of a docking window is done through a call to

IRmApplication: :ShowDockWindow (..). The application will handle the
appropriate destruction / hiding of the associated docking frame.

20

The docking frame ID’s are important! Proper management of the ID’s is a must for
complete docking frame handling. Please refer to the docking editor SDK projects for
examples on managing docking windows. Please note that the docking frame must be
registered as well as any attached child windows such as dialogs.

MDI Child Windows

Calling TRmApplication: :CreateMDIChildFrame (..) will create a child MDI
frame that the plug-in can use to attach its own windows to. Minimally, the plug-in must
register the returned MDI child frame with the application, and un-register the same handle
upon destruction. With MDI windows, the plug-in must be sure to use the appropriate
window messages when creating (WM _MDIACTIVATE) or destroying (WM MDIDESTROY)
the returned MDI child frame.

Undo / Redo Operations

RenderMonkey allows developers create their own complex undoable operations. These
operations can be nested, and will be fully managed by RenderMonkey once added to the
undo stack.

To start making an undo operation, or to nest an additional undo operation within an
existing operation, call TRmApplication::StartUndoMaking(..). Once the
undoable operation has been completed, calling

IRmApplication: :EndUndoMaking () will finish wrapping the undo operation
initiated by the innermost call to IRmApplication: :StartUndoMaking(..) . Each
call to IRmApplication::StartUndoMaking(..) must have a companion
IRmApplication: :EndUndoMaking () to close the scope at each nesting level.

RenderMonkey supplies the following undo operations by default:

RmAddNodeUndoOp

This undo operation will handle the undoing and redoing of adding a new node to the
database. Push an instance of this class onto the undo stack after the new node is added to
the database.

RmUpdateNodeUndoOp

This undo operation will handle the undoing and redoing of a general node update within
the database. Push an instance of this class onto the undo stack before the node is update in

the database.

RmRenameNodeUndoOp

21

This undo operation will handle the undoing and redoing of a node name change within the
database. Push an instance of this class onto the undo stack before the node name has
actually changed within the database.

RmDeleteNodeUndoOp

This undo operation will handle the undoing and redoing of a node deletion within the
database. Push an instance of this class onto the undo stack after the node if removed form
the database, but before the node is actually deleted from memory.

RmChangeActiveEffectUndoOp

This undo operation will handle the undoing and redoing the changing of the active effect.
Push an instance of this class onto the undo stack either before or after the active effect has
been changed.

RmSemanticChangeUndoOp

This undo operation will handle the undoing and redoing the changing of the predefined
variable semantic. Push an instance of this class onto the undo stack before the variable
semantic has changed. The new semantic must be provided upon construction.

RmModelOrientationChangeUndoOp

This undo operation will handle the undoing and redoing of a model orientation change.
Push an instance of this class onto the undo stack before the orientation has changed. The
new orientation must be provided upon construction.
RmTextureOriginChangeUndoOp

This undo operation will handle the undoing and redoing of a texture origin change. Push
an instance of this class onto the undo stack before the origin has changed. The new origin
must be provided upon construction.

Custom Undo Operation Creation

To create a custom undoable operation, derive the appropriate class from the RmUndoOp
base class, and pass an instance of that class as the parameter to the
IRmApplication: :StartUndoMaking (..) function. Overriding the virtual
functions RmUndoOp: :Undo () and RmUndoOp: :Redo () to perform the custom
operations.

Application Preferences Management

22

As indicated in the TRmPlugIn plug-in interface, RenderMonkey provides plug-ins the
ability to create an application property page. These property pages are available through
the main menu, by selecting Edit->Preferences. The associated data can be stored in the
application registry file. To gain access to the application registry, use the
IRmRegistryManager interface. This interface is available through the
IRmApplication interface using the GetRegistryManager () method. Once the
appropriate registry node (RmRegistryBranch) has been attained, normal node
transactions can be used to save the related data.

23

Plug-in Management

Upon the application startup, all plug-in DLL’s are loaded from the \plugins directory, and
stored internally. All plug-ins are managed according to their type, and will be
automatically associated with the appropriate nodes through the workspace tree context
menu.

The user can create multiple plug-ins (editors, generators, etc.) for the same node type. The
application will simply provide the appropriate list when called upon to do so.

Supported Plug-in Types

IRmPlugIn

+—| IRmEditorPlugIn

IRmImporterPlugln

Y

Y

IRmExporterPlugln

Y

IRmGeometryLoaderPlugln

—>| IRmTexturelLoaderPlugln

—>| IRmGeneratorPlugln

IRmPlugIn

Generic RenderMonkey plug-in interface designed to receive main communication
messages from the main application and to specify a property page dialog for main
application preferences. A creator of this plug-in type must specify
RM PLUGINTYPE GENERIC as the plug-in type value in the plug-in description.
IRmEditorPluglIn

A node editor plug-in. This plug-in is used by the main application to edit nodes supported

24

by this plug-in. Use plug-in description to specify which nodes can be edited by this plug-
in in the workspace. The plug-in must return RM_ PLUGINTYPE EDITOR in its plug-in
description structure.

IRmImporterPlugln

A plug-in implementing this interface is used by the main application to import data from
external formats into the run-time database. An importer plug-in must use
RM PLUGINTYPE IMPORTER in its plug-in description structure.
IRmExporterPlugln

A plug-in implementing this interface is used by the main application to export data from
the run-time database into an external format. An exporter plug-in must use

RM PLUGINTYPE EXPORTER in its plug-in description structure.
IRmGeometryLoaderPlugln

This plug-in type is used by the main application to import geometry data from a supported
file format into RenderMonkey model data node. The plug-in must use

RM PLUGINTYPE GEOMETRY LOADER in its plug-in data description structure.
IRmTexturelLoaderPlugln:

This plug-in type is used by the main application to import texture data from a supported
file format into RenderMonkey texture data node. The plug-in must use
RM PLUGINTYPE TEXTURE LOADER in its plug-in data description structure.
IRmGeneratorPlugln

This plug-in type is used by the main application to generate data for a RenderMonkey
node. The plug-in must use RM PLUGINTYPE GENERATOR in its plug-in data

description structure.

Please refer to the SDK example projects for plug-in implementation examples.

Plug-in Description Structure

One of the key components of a plug-in is the plug-in description structure. When a plug-
in is loaded into the application, the application will extract the necessary information from
this structure, allowing the appropriate node and type associations to take place.

25

Elements of the plug-in description structure include:

A

Plug-in type

Plug-in ID

A list of supported node types

SDK version

Supported rendering API (DX, OpenGL, API-agnostic)
Plug-in name

The following plug-in types are supported:

Nk W=

Generic Plug-in

Editor Plug-in

Importer Plug-in
Exporter Plug-in
Geometry Loader Plug-in
Texture Loader Plug-in
Generator Plug-in

Plug-in Interfaces

Generic Plug-in Interface

A generic plug-in is indicated by setting the plug-in type (in the plug-in description struct)
to RM PLUGINTYPE GENERIC. This plug-in, as do all plug-in types, must implement
the TRmP1ugIn interface.

The IRmPlugIn interface provides the basic mechanism for initialization / un-
initialization, as well as the method for receiving of messages from the application. It also
gives the plug-in the ability to add its own property page to the application preferences
property dialog. A plug-in may choose to act upon an individual node, or upon a group of

nodes.

The TRmP1ugIn interface contains the following entry points:

e Tnit/Uninitialize

These functions are to provide plug-in initialization / un-initialization.

e GetPlugInDescription

This function is to retrieve the plug-in description structure.

e MessageHandler

26

This function it to provide application message processing.
e HadPropertyDlg/AddPropertyDlg

These functions provide the ability to add a plug-in preference page in the application
preferences dialog.

Editor Plug-in Interface

An editor plug-in is meant to provide an intuitive interface where the user can edit a single,
or a group or related nodes. Examples of editor plug-ins include the color node editor,
shader editor, and vector editor. An editor plug-in is indicated by setting the plug-in type
(in the plug-in description struct) to RM_PLUGINTYPE EDITOR. This plug-in must
implement the TRmEditorPlugIn interface, which is derived from the TRmPlugIn
interface.

The TRmEditorPluglIn interface contains the following entry point:
e EditNode
This function is intended to launch the appropriate editor for the appropriate node, or

group of nodes.

Importer Plug-in Interface

An importer plug-in is meant to provide a method to import external data into the
RenderMonkey database. An example of an importer plug-in is the package importer. An
importer plug-in is indicated by setting the plug-in type (in the plug-in description struct) to
RM PLUGINTYPE IMPORTER. This plug-in must implement the
IRmImporterPlugln interface, which is derived from the TRmP1ugIn interface.

Importer plug-ins can be used to parse custom engine scripts or data files, providing a
mechanism where different custom datasets can be easily transferred across to work within
RenderMonkey.

The TRmImporterPluglIn interface contains the following entry point:

e TmportNode
This function is intended to launch the appropriate importer, allowing the user to select

the external data source intended for conversion and eventual use within
RenderMonkey.

27

Exporter Plug-in Interface

An exporter plug-in is meant to provide a method to export internal data from the
RenderMonkey database for possible use within another application. An example of
exporter plug-ins are the package importer, and the fx exporter. An exporter plug-in is
indicated by setting the plug-in type (in the plug-in description struct) to
RM PLUGINTYPE EXPORTER. This plug-in must implement the
IRmExporterPluglIn interface, which is derived from the TRmP1ugIn interface.

The TRmExporterPlugIn interface contains the following entry point:

e ExportNode
This function is intended to launch the appropriate exporter, allowing the user to

convert internal RenderMonkey data into an external format for use outside of
RenderMonkey.

Geometry Loader Plug-in Interface

A geometry loader plug-in is meant to provide a method to load external model files and
convert the data into a RenderMonkey compatible format. Examples of geometry loader
plug-ins are 3DS, X, and OBJ file loaders. The loader is invoked whenever a user selects a
file to load geometry for a model node. A geometry loader plug-in is indicated by setting
the plug-in type (in the plug-in description struct) to
RM PLUGINTYPE GEOMETRY LOADER. This plug-in must implement the
IRmGeometryLoaderPlugIn interface, which is derived from the IRmPlugIn
interface.

The TRmGeometryLoaderPluglIn interface contains the following entry points:
e GetSupportedExtensions

This method is used to query a geometry loader plug-in about the file types that it
supports for importing geometry models.

e CanlLoadGeometry

This method lets the main application know whether the plug-in that implements the
geometry loader interface can load a specified file described by the given file name.

e ToadGeometry

Load geometry object(s) from the given.

28

Texture Loader Plug-in Interface

A texture loader plug-in is meant to provide a method to load external texture files and
convert the data into a RenderMonkey compatible format. An example of a texture loader
plug-in is theimage loader. The loader is invoked whenever a user selects a file to load a
texture for a texture node. A texture loader plug-in is indicated by setting the plug-in type
(in the plug-in description struct) to RM PLUGINTYPE TEXTURE LOADER. This
plug-in must implement the TRmTextureLoaderPlugIn interface, which is derived
from the TRmP1ugIn interface.

The TRmTextureLoaderPlugln interface contains the following entry points:

e (GetSupportedExtensions

This method is used to query a texture loader plug-in about the file types that it
supports for importing texture files.

e CanLoadTexture
This method lets the main application know whether the plug-in that implements the
texture loader interface can load a specified file described by the given file name and
texture type.

e ToadGeometry

Called to load a texture from the given file.

Generator Plug-in Interface

A generator plug-in is meant to provide the ability to populate the node database based on
specified parameters in the plug-in. This is to provide a method of procedural geometry or
texture creation. Examples of generator plug-ins include the geometry generator and the
texture generator plug-ins. An generator plug-in is indicated by setting the plug-in type (in
the plug-in description struct) to RM_ PLUGINTYPE GENERATOR. This plug-in must
implement the IRmGeneratorPlugIn interface, which is derived from the
IRmPlugIn interface.

The IRmGeneratorPlugln interface contains the following entry point:
e GenerateData

This method is called to generate contents for the specified input node.

29

RmModule and RmModuleManager Helper Classes

Each plug-in can have multiple instances of the actual plug-in associated with various
nodes. For example, if we take the vector editor plug-in, it may have multiple instances
(modules) existing at the same time if the user selected to edit multiple (say, 5) vectors at
the same time. The developer implementing the plug-in may wish to manage individual
instances in any way they choose, however, the RenderMonkey SDK provides a convenient
method of managing these individual modules within a plug-in by using RmModule and
RmModuleManager.

The RmModuleManager class will help manage a group of registered RmModule
derivative classes. Each RmModule derivative class helps organize modules that are
associated with a single, or a group of nodes. For instance, one module may support the
editing of all render state blocks within the same effect. In this case, if the user is using our
editor to edit a render state block, the module manager will search to see if an existing
module is available to handle the editing of that node. If there is no existing module to
handle the editing of that node, the plug-in should then create a new one, otherwise the
module manager will direct the editing of the node to the existing module.

These classes are defined in the SDK header file RmPlugIn.h

30

Plug-in Project Setup

If the user would like to use the included RenderMonkey SDK MFCUtilities library, which
is useful for GUI development, then the developer must compile and link to the VS8.0
MEFC libraries.

Setup for Visual Studio 2005

Requirements

a. RenderMonkey version 1.71 must be installed with the SDK. Make a note of the
directory it is installed into.

b. You must have Visual Studio 2005 installed

Creating a New Project

a. File > New -> Project

Select “MFC DLL” (if you want to use MFC) or “Win32 Project” otherwise.

New Project
Project tvpes: Templates: IE'
=) Visual C++ | wisual Studio installed templates al
ATL | |
LR ﬁj Custom wwizard 33 ‘windows Forms Application
General (ZACLR Console Application (A Win32 Console Application
MFiC [@ATL Project B MFC Application
Smart Device EMakeFile Project @.ASP.NET Web Service
Win3z (@ ATL Server Project “5 ATL Server Web Service
[Other Languages SE]ATL Smart Device Project [FfAClass Library
(= Other Project Tvpes ECLR Empty Project Rkl
Setup and Deployment I MFC Activex Control
Databa.:. AH#MFC Smart Device Activex Contral Wt Device Application
\E:ctenls;tl I;Y o e stk Digsire DLL [F150L Server Project
isual Studio Salutions i = .
N Ewin3z Project JElwin32 Smart Device Praject
e oo e Control Library EWindows Service
Il |
[project for creating a custom application wizard
Name: | <Enter_name>
Location: | C:\Program Files\&TI Research Inc\RenderMonkey 1.7450KProjects
Solution: |Create new Solution v [¥]create directary for solution
Solution Mame: | <Entetr_name = | [Jadd to Source Control
oK,] [Cancel

31

Project Settings

a. Project -> Properties
b. Configuration Properties->General Properties

Configuration Type -> “Dynamic Library
Character Set -> “Use Unicode Character Set”

If you want to use MFC,
set Use of MFC to “Use MFC in shared DLL”

hilas Properiy Pagrs

Cordepr gt | At Dabg) = Plafoong | Addesdndl] b I ot P I
= Cormrsan Fropartas B Gesmra
Aafararcar T e gt iathaniianse Ve sk L
= Canfiquratian Fropartias [rimrracksts Camcbarp JBimary F T onligunatisn®™ame v sl
‘ararsl Eterebne: i [ibst o Chan o 1 g ¥ty * 0T, Y, g, rgn ¥ i %, g H Tt F
Cabuarn Bukei Log Pl §iIraow T og. bt
- Linkar [nhevited Projed: Froperty Shests
: ;:ﬁ" L — Bl Projeck Dedaults
Dot Corfigrsion Type Drrarme: by o
- Brovvmm Irformation L of MPC lu;;-:um.mm oL
H B Evand
Ll &L T

H Cusbars Euid Tap
Wb Caplrprsant

Fiirdmica CAT Lsa ini ATL

e 3%

Cormrsan Laspisga Purdirss et igEs g TR pprt

e Prougeans Copbisnda st K Wt Prosgran G sthon
Dighgait Darechary

Spescilies mirslaties path ko ths et Nl desciody o inchide sranmment varisbis

[o [concel |[aeew |

c. Configuration Properties->C/C++->General Properties

Additional Include Directories must contain RenderMonkey’s SDK include
directory. (<MyRenderMonkeylInstallDirectory>/SDK/Include). This path can be
an absolute path or a relative path as shown below:

slikMaiel dilnrilly Properfy Pages

Condpration| | ActiveiDaleag |

% Corsrsan Froparbas
= Canfigursdan Friopariss
aararsl
Cabugoing
= ST+

Cpdinesdan
FrapcomEr
Coeda Gararatian
Languaga
Fracapilsd Hasdars
Cutput P
Ercrvma [ndcawadion
Fedvarcad
Cormmand Lina

H Lirkar

+ Maniant Taa

+ Aasrrcan

ML Coosrsant Garsratar

Brovum Infarmestian

& B Evurin

H Custaors Bulid Tap

‘Wb Caplrpreant

% Pl | AceatWanaz)

Feddiional [rcheda Ciraciceinn
Bmcabyes B ping Fd eeeriss
Cinbrsg [racewssdion Famest
Sippeess Lt Banned
Warrirg Lavel

Lot i Povtnbdlly Bouss:
Troad "Haminge A Erroen

L LHECODE Peipodes Fles

Al Trechiple: [Heeionkes

Ssles o of Wit Rrscines 5 Dot ik pethy Lp JRan Dok e it I e than one,

[[path]

i imchede

Program Datatass for Edit B Contisun {215
Ve | remad)

Lorwull 34,/ W)

Ha

Ha

Wes

[ox | comed |

d. Configuration Properties->C/C++->Code Generation Properties

€.

Runtime library must be set to “Multi-threaded Debug DLL” or “Mutli-threaded

DLL” depending on the build configuration selected.

HikMafel dilnridlg Froperfy Pages

% Corwsn Fropartias
= Canfiguration Fropartiss
‘aararad
Cubugoing

=TT+
Ganaral
Cpliriestion
FrapcoaiEr
Coxda Garsaratian
Languaga
Frecarspilsd Hasdars
Cutpai Pl
Errevma [rdoowadion
Fetamncad
Corsrnared Lina

Lirdar

¥ Manfat Tad

& Aaszorcan

ML Coomsant Ganaratar

¥ Brovnm Infamastan

Buid Everis

Tty Buid Teap

Wb Gaplrreant

Corfiprsion) [T ~ Bifon |Acteiwni)

Erasbds Sring Fooling

Erasbide Plarwnsl Rt]

Erasbdn Cd-4 Evcuplicra

Saraalley Topess Cheech

Baaic: Aundira Chada

Fagniires Liwsry

Sinxt Farntar Aligraran

Bulter Sty Chedk

Erasbls Funclion-Lareal Linking
Ersbides Enhuwsced Fetnudion Set
Floading Paint: Ficaal

Erasbde: Aogtine] Posnd Excepdions

[Emalile Steing Paolisg

Eniabbs read-onks siving pookng Tor genesting snesles conmsd oods, [5F]

Wau o/ GF)
s | Tmb
Vum ||EHac]
W
el - b

J
P b pabed Dl DO [r906T)

—
Yes
Ha
Wk St
Fradm . ¥p pracis)
Ha

[|| cancd

Configuration Properties-> C/C++->Language Properties

33

Treat wchar _t as Built-in type must be set to “No”
Enable Run-Time Type Info must be set to “Yes”

§HEMaseEdilnrllg Froperiy Fages

Qo gt | ActimiDabeag | ¥ Plaifoan | Acdeedndl)

+ Cormren Froparias Dinabds Largusson Exbarmicra Ha
= Canfiguration Fropartiss [i, T Uresigrasd
aararal Traad wchar_ o Bulk-n Tspa
Catiggrg Fores Conforrewece i For Loog Soope
= ST Ersbis Aure-Torw Typa i
— COEndF Sppt

H Lirdar

Manifant Taa

+ Amsrroan

P Cooursant Gananabar
H Brovae Infarrestian

Bd Evurin
Cisbare Buld Tap £
B ‘Wb Daplayrsant A LBIRAIBOE Enbefrianiy.
T o grasbdes banap s silereriorg . (1780

|| canca

f. Configuration Properties-> Linker->General Properties

Output File must be set to output to RenderMonkey’s plug-ins directory
(<MyRenderMonkeyInstallDirectory>/plugins). This path can be an absolute path

or a relative path as shown below.

Additional Library Directories must include RenderMonkey’s SDK library
(<MyRenderMonkeyInstallDirectory>/SDK/lib). This path can be an absolute path

or a relative path as shown below.

34

slikMafel dilnrillg Property Fages

oo o | _ﬁ-:ln'lll:ll:ll.lql

& Cormsan Fropartas
= Canfigursban Froparian
arars
Cubigorg
H S+
= Lirdar
Irgad
Fariust Fin
Db ggineg
Syabars
Cpdirication
Erbacded Tl
fedearcad
Cormearsd Lina
H Manifant Taad
Assrrcan
P Cooursant Garsarabar
¥ Browne Infarsstian
Buid Evurdy
Cimbars Euid Teap
Wb Gaploreant

% Haforn |ActestwnTd)

Cutpul Fila

Sl PR

Varsian

Erasbie Jncreanenial Linking
Suppremn Tearbup Banrar
T Jrapeoet, Lbwary
Faginltar Cedpest

Bddony Liwyy [Escines
Link: Librasry Cwpardsrcias

L Libaaay Cparadeny [rads
Lhvm LMICO0E Fanperaa Filnn

Dwlpis Fle

v thee f ol oot Fibs rewne, (KL [Re T

g. Configuration Properties->Linker->Input Properties

Additional Dependencies must include RmCore.lib and RmUftilities.lib. If your
plug-in uses MFC, you should also add RmMFCUftilities.lib.

SDKHsteE dilarDlg Propeany Pages

Carfiquratian: | Bciivei D]

B Corwrmn Prigeities
B Condpatinn Propadtios
el
Cetugging
SR
= Lindes
iy

[rpusk
Wunded: Fle
Dbnppn]
Syshars
Coplisndz i
Enbesdded KA
Eadenrd
Corarae] Lin
w Myt Tool
& Asoaies
H T Coore e
- B Inforrestion
T Bl Evenis
gt Eulld e
el wsborymsrt

% plaifoore | Adieseeaz]

Facktienl [espesincies
Ipreaw Al Dl Librarian
[iraee s Lbesey
Wioohuls Cufindicn Fla

e Fodule by drpersbly
Erdad Mmnsgsd Facua Fis
Fuaos Sywbaol Aederenoss
Cenlrp Lasdesd [LLe

ey Link; Asmce

¥ (ot

PPl Joby FUPLIT I e 3 I Moo DL IRT e 0 il
Ha

35

Project Debugging

Under Configuration Properties -> Debugging,

Set Command to point to RenderMonkey.exe (which is found in directory where you
installed RenderMonkey).

Set Working Directory to RenderMonkey’s installed directory (the same directory as

above).

HiMadet dilnridlg Froperiy Pages

Confeprain| | el Datesg |

& Corsrsan Fropartias
= Canfiguraton Froparian
Taarara

(R =

Lirkar

Manfat Tad

Aaszrcan

P Coosrsant: Garsrstar
¥ Brovam Infamstian

Build Evenia

Cusbars Build Toap

H 'Wab Caplrprsant

% Plafoaw | AckheWnIz]

[Diebaau i binoh
Lol 'winadioess [ebiges

Corsnarel

Cowwaan] degeresnts
Wearhingg Diracioay
dtach

[ebrsgger Tvpa
Ereiaanand

Fiargm Errdirarrsant
RN T]

Loy
Thes chesb gy coanaresnad by e

-
“CiPragran F asaarch v L. Perds
“CPragan I smaarehi w LT
Fadka

b

L]

o || carce

36

SDK Feedback

This SDK is provided for the convenience of developers to allow them to extend existing
RenderMonkey framework to suit their needs. Please send us any feedback about this SDK
in regards to the usefulness of its features as well as about completeness of its API. Any
additional feature requests or bug reports are always welcome. We look forward to hearing
from you about the types of plug-ins that you will create and anything else that you may
wish to share with us!

Please send feedback to gputools.support@amd.com

37

