
DX12 & Vulkan
Dawn of a New Generation of

Graphics APIs

Stephan Hodes
Developer Technology Engineer, AMD

Agenda

Why do we need new APIs?

What‘s new?

• Parallelism

• Explicit Memory Management

• PSOs and Descriptor Sets

Best Practices

Evolution of 3D Graphics APIs

• Software rasterization

• 1996 Glide: Bilinear filtering + Transparency

• 1998 DirectX 6: IHV independent + Multitexturing

• 1999 DirectX 7: Hardware Texturing&Lighting + Cube Maps

• 2000 DirectX 8: Programmable shaders + Tessellation

• 2002 DirectX 9: More complex shaders

• 2006 DirectX 10: Unified shader Model

• 2009 DirectX 11: Compute

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2006200720082009201020112012201320142015

GPU (GFLOPS)

CPU (10 MIPS single
Core)

GPU performance increasing faster than single
core CPU performance

• Allow multi-threaded command buffer recording
• Reduce workload of runtime/driver

• Reduce runtime validation
• Move work to init/load time (e.g. Pipeline setup)
• More explicit control over the hardware
• Reduce convenience functions

How to get GPU bound
• Optimize API usage (e.g. state caching & sorting)

• Batch, Batch, Batch!!!

• ~10k draw calls max

New APIs

Convenience function: Resource renaming

Examples:
• Backbuffer
• Dynamic vertex buffer
• Dynamic constant buffer
• Descriptor sets
• Command buffer

Frame N Frame N+1

Frame N

Frame N+1

Frame N

CPU:
GPU:
Res Lifetime:

Frame N+1

Track usage by End-Of-Frame-Fence
• Fences are expensive
• Use less than 10 fences per frame

Best practice for constant buffers:
• Use system memory (DX12: UPLOAD)
• Keep it mapped

Adopted by several developers & titles

• Developers are willing do the additional work

• Significant performance improvements in games

• Good ISVs don‘t need runtime validation

Only available on AMD GCN hardware
Needed standardization

2013: AMD Mantle
„Mantle is not for everyone“

• It‘s a „just the right level API“

• Support different HW configurations

• Discreet GPU vs. Integrated

• Shaders & command buffer are HW specific

• Support different HW generations

• Think about future hardware

• On PC, your title is never alone

2013: AMD Mantle
„Mantle is not a low level API “

Next Generation API features
 DirectX12 & Vulkan share the Mantle philosophy:

• Minimize overhead

• Minimize runtime validation

• Allow multithreaded command buffer recording

• Provide low level memory management

• Support multiple asynchronous queues

• Provide explicit access to multiple devices

The big question: „How much performance will I
gain from porting my code to new APIs?“

No magic involved!

Depends on the current bottlenecks

Depends a lot on engine design

• Need to utilize new possibilities

• It might „just work“ (esp. if heavily CPU limited)

• Might need redesign of engine (and asset pipeline)

Particle Update

Post
Processing

Transparent
Object

Rendering

Game Engine 1.0
(Designed around API commands)

DirectX 11 Runtime
(A lot of validation)

DirectX 11 Driver
(A lot of optimization)

Hardware

AO GI

Lighting
And

Shading

Shadowmaps

Gbuffer

Particle Update

Post
Processing

Game Engine 1.0
(Designed around API commands)

DirectX 11 Runtime
(A lot of validation)

DirectX 11 Driver
(A lot of optimization)

Hardware

AO GI

Direct
access

DX12 Runtime
DX12 Driver

API Abstraction
Layer

Shadowmaps

Gbuffer

Lighting
And

Shading

Transparent
Object

Rendering

Particle Update

Game Engine 1.0

DirectX 11 Runtime
(A lot of validation)

DirectX 11 Driver
(A lot of convenience)

Hardware

AO GI

DX12 Runtime

DX12 Driver

Game Engine 2.0

Direct
access

Direct
access

DirectX 11 Runtime
(A lot of validation)

DirectX 11 Driver

Shadowmaps

Gbuffer

Lighting
And

Shading

Post
Processing

Transparent
Object

Rendering

Think Parallel!
Keep the GPU busy

CPU side multithreading

• Multi threaded command buffer building

• Submission to queue is not thread safe

• Split frame into macro render jobs

• Offload shader compilation from main thread

• Batch command buffer submission

• Don‘t stall during submit/present

Radeon Fury X Radeon Fury

Compute Units 64 56

Core 1050 Mhz 1000 Mhz

Memory size 4 GB 4 GB

Memory BW 512 GB/s 512 GB/s

ALU 8.6 TFlops 7.17 TFlops

 64 CU
x 4 SIMD per CU
x 10 Wavefronts per SIMD
x 64 Threads per Wavefront

Up to 163840 threads

Batch, Batch, Batch!!!

GPU side multithreading

IA

VS

Rasterizer

PS

Output

GPU: Single graphics queue

Multiple commands can execute in parallel
• Pipeline (usually) must maintain pixel order
• Load balancing is the main problem

Culling

Draw N+1

Draw N+1

Draw N+1

Draw N+1

Draw N+1

Draw N+1

Draw N

Draw N

Draw N

Draw N

Draw N

Draw N

Draw N+2

Draw N+2

Draw N+2

Draw N+2

N+2 …

N+2 …

Time Query

• Indicate RaW/WaW Hazards
• Switch resource state between RO/RW/WO

• Decompress DepthStencil/RTs
• May cause a stall or cache flush

• Batch them!
• Split Barriers may help in the future

• Always execute them on the last queue that
wrote the resource

Most common cause for bugs!

Explicit Barriers & Transitions

IA

VS

Rasterizer

PS

Output

GPU: Barriers

• Hard to detect Barriers in DX11
• Explicit in DX12

Culling

Draw N

Draw N

Draw N

Draw N

Draw N

Draw N

B
a
rrie

r

Draw N+2

Draw N+2

Draw N+2

Draw N+2

Draw N+2

Draw N+2

Time Query

Draw N+1

Draw N+1

Draw N+1

Draw N+1

Draw N+1

Draw N+1

B
a
rrie

r

IA

VS

Rasterizer

PS

Output

GPU: Barriers

• Batch them!
• [DX12] In the future split barriers may help

Culling

Draw N

Draw N

Draw N

Draw N

Draw N

Draw N

Time Query

Draw N+2

Draw N+2

Draw N+2

Draw N+2

Draw N+2

Draw N+2

D
o
u
b
le

 B
a
rrie

r

Draw N+1

Draw N+1

Draw N+1

Draw N+1

Draw N+1

Draw N+1

IA

VS

Rasterizer

PS

Output

GPU underutilization

Culling can cause bubbles of inactivity.
Fetch latency is a common cause for underutilization

Culling

Time Query

Draw N

Draw N

Graphics

Compute

Copy

Multiple Queues

• Let driver know about
independent workloads

• Each queue type a superset
• Multiple queues per type
• Specify type at record time
• Parallel execution

• Sync using fences
• Shared GPU resources

Multiple queues allow to specify tasks to execute in parallel
Schedule different bottlenecks together to improve efficiency

Asynchronous Compute
Bus dominated Shader throughput Geometry dominated

Shadow mapping
ROP heavy workloads
G buffer operations
DMA operations
- Texture upload
- Heap defrag

Deferred lighting
Postprocessing effects
Most compute tasks
- Texture compression
- Physics
- Simulations

Rendering highly detailed
models

DirectX 11 only supports one device
• CF/SLI support essentially a driver hack
• Increases latency

Explicit MGPU allows

• Split Frame Rendering
• Master/Slave configurations
• Split frame rendering
• 3D/VR rendering using 2 dGPUs

Explicit MGPU

Take Control!
Explicit Memory Managagement

Explicit Memory Management

• Control over heaps and residency

• Abstraction for different architectures

• VMM still exists

• Use Evict/MakeResident to page out
unused resources

• Avoid oversubscribing resident memory!

DEFAULT UPLOAD READBACK

Memory
Pool

Local (dGPU)
System(iGPU)

System System

CPU
Properties

No CPU access Write Combine Write Back

Usage Frequent GPU
Read/Write

Max GPU
Bandwidth

CPU Write Once,
GPU Read Once

Max CPU Write
Bandwidth

GPU Write Once,
CPU Read

Max CPU Read
Bandwidth

Explicit Memory Management
Rendertargets & UAVs
• Create in DEFAULT

Textures
• Write to UPLOAD
• Use copy queue to copy to DEFAULT

• Copy swizzles: required on iGPU!

Buffers (CB/VB/IB)
• Placement dependent on usage:

• Write once/Read once => UPLOAD
• Write once/Read many => Copy to DEFAULT

Direct3D 12 Resource Creation APIs

Physical
Pages

 Physical Pages

 GPU VA

 Resource Heap

Texture3D Buffer

Physical
Pages

 GPU VA

 Resource
Heap

 Texture2D

 Committed Placed Reserved

Don‘t over-allocate committed memory
• Share L1 with windows and other processes

• Don‘t allocate more than 80%
• Reduce memory footprint

• Use placed resources to reduce overhead
• Use reserved resources as PRT

Allocate most important resources first

Group resources used together in same heap
• Use MakeResident/Evict

Explicit Memory Management

Avoid Redundancy!

Organize your pipelines

Full pipeline optimization

● Simplifies optimization

Additional information at startup

● Shaders

● Raster states

● Static constants

Build a pipeline cache

● No pre-warming

Most engines not designed for
monolithic pipelines

IA

Pipeline

RS

DB CB

PS

GS

VS

DS

HS

State

State
RT RT

IB

Res Res Res Res Res Res Res Res

Res Res Res Res Res Res Res Res

Res Res Res Res Res Res Res Res

RT DS

State

Descriptor

Set

Descriptor

Set

Descriptor

Set

Root

State

PipelineStateObjects

Old APIs:
• Single resource binding
• A lot of work for the driver to track, validate and

manage resource bindings
• Data management scripting language style

New APIs:
• Group resources in descriptor sets
• Pipelines contain „pointers“

• Data management C/C++ style

Descriptor Sets

Table driven
Shared across all shader stages
Two-level table

– Root Signature describes a top-level layout
• Pointers to descriptor tables
• Direct pointers to constant buffers
• Inline constants

Changing which table is pointed to is cheap
– It’s just writing a pointer
– no synchronisation cost

Changing contents of table is harder
– Can’t change table in flight on the

hardware
– No automatic renaming

Table
Pointer

Root
Signature

Root
Constant

Buffer
View

32-bit
constant

Table
pointer
Table

pointer

CB view

CB view

SR view

UA view

Descriptor
Table

SR view SR view

SR view

SR view

Descriptor
Table

Table
pointer

Resource Binding

PIPELINE_STATE_DESC

Pipeline

 PS

 VS

 DS

 HS

Root

Descriptor

Table
Pointer

Root
Constant

Buffer
View

32-bit
constant

Table
pointer

SR view

SR view

SR view

CB view

CB view

SR view

UA view

CB0

CB1

CB0

CB0

SR0

CB1

CB0

SR0

SR1

UA0

Use Shader and Pipeline cache
• Avoid duplication

Sort draw calls by PSO used
• Sort by Tessellation/GS enabled/disabled

Keep Root Descriptor small
• Group DescriptorSets by update pattern

Sort Root entries by frequency of update
• Most frequently changed entries first

PSO: Best Practices

Top 5 Performance Advice

#5. Avoid allocation/release at runtime

#4. Don‘t oversubscribe!
 Manage your Memory efficiently

#3. Batch, Batch, Batch!
 Group Barriers, group command buffer submissions

#2. Think Parallel!
 On CPU as well as GPU

#1. Old optimization recommendations still apply

Thank you!

Contact: Stephan.Hodes@amd.com
@Highflz

mailto:Stephan.Hodes@amd.com

