
1 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

ADVANCED SHADER PROGRAMMING ON GCN
PRESENTED BY TIMOTHY LOTTES

2 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

ADVANCED SHADER PROGRAMMING

 Skipping the larger introduction on GCN
“The AMD GCN Architecture – A Crash Course” is a great refresher

http://www.slideshare.net/DevCentralAMD/gs4106-the-amd-gcn-architecture-a-crash-course-by-
layla-mah

 Presenting a holistic view of shader programming
Focusing on how to reason about high-level design decisions

And presenting as many optimization tools as is possible in one hour

 Freely mixing Vulkan® and DirectX® 12 terms (talk applies to both APIs)

 Flood of technical background and strategies for optimization
Feel free to follow-up after the talk with questions: Timothy.Lottes@amd.com

http://www.slideshare.net/DevCentralAMD/gs4106-the-amd-gcn-architecture-a-crash-course-by-layla-mah
mailto:Timothy.Lottes@amd.com

3 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

TERMS

 I$ = L1 instruction cache

 K$ = scalar L1 data cache (aka “Konstant” cache)

 SALU = scalar ALU operation

 SGPR = scalar general purpose register

 SMEM = scalar memory operation

 V$ = vector L1 data cache

 VALU = vector ALU operation

 VGPR = vector general purpose register

 VMEM = vector memory operation

4 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

THE GPU

 A GPU is roughly a bunch of functional blocks connected by Queues
Can see the regular structure of blocks on GPU die shots

 Functional blocks have a fixed capacity/time

 Size of Queues control latency and volatility tolerance

 Shader Optimization
Keep the Queues fed with regular steady work

Adjust workload to avoid draining limiting Queue

Adjust workload to avoid being limited by fixed capacity/time

5 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

GCN BACKGROUND

 Example: R9 Nano
1 GHz clock, 8192 Gflop/s, 512 Gbyte/s, 256 Gtex/s, 64 Grop/s

2 MiB L2$, 64 CUs each with 16KiB V$ (Vector L1) and 4 SIMDs

Each SIMD has capacity for 10 waves (64 lanes/wave)

Each CU has a peak throughput of 64 VALU instructions/clock

Each 4 CUs share 16KiB K$ (Constant L1), and 32KiB I$ (Instruction L1)

CU1
SIMD0 16KiB

V$SIMD2

SIMD1

SIMD3

CU0
SIMD0 16KiB

V$SIMD2

SIMD1

SIMD3

CU2
SIMD0 16KiB

V$SIMD2

SIMD1

SIMD3

CU3
SIMD0 16KiB

V$SIMD2

SIMD1

SIMD3

16KiB
K$

32KiB
I$

6 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

MOTIVATIONS

 Optimization is about maximizing VALU utilization (getting work done)
A core component of that is optimizing for data flow in the GPU

Minimizing getting stalled on memory

 Showing a real GCN CU utilization plot across time below
The outlined box shows filled green for areas of utilized VALU cycles in each SIMD of the CU

See all the dead space = large amount of lost capacity to do work

This talk is ultimately about minimizing this VALU dead space

7 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

TUNING KNOBS

 Adjust data format and organization (packing)

 Adjust data access patterns (spatial and temporal)

 Adjust the amount of instructions required

 Adjust the binding complexity

 Adjust the way work is distributed across the chip

 Adjust the way work is separated into kernels and waves

 Adjust the amount of work which is running in parallel

8 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

LOOKING FIRST AT WORK DISTRIBUTION

 How to optimally leverage caches

 Methods for optimal grouping of work into workgroups

 Recommendations on sizing of work per PSO change

9 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

SHADER SIZE TARGETS TO STAY IN I$

 Example: R9 Nano
Each 4 CUs share 16KiB K$, and 32KiB I$ (16/chip)

 Shader size targets to stay cached
32KiB I$ / 4 to 8-bytes per Instruction = 4K to 8K instructions fit in the cache

 If multiple shaders need to share the cache, optimal to have smaller shaders
4 shaders / cache = 1K to 2K instructions average per shader

8 shaders / cache = 512 to 1K instructions average per shader

16 shaders / cache = 256 to 512 instructions average per shader

10 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

OPTIMAL TO NOT CHANGE PSO TOO OFTEN

 Using the R9 Nano as an easy example to reason about (1ns/clk)
1 GHz clock, 8192 Gflop/s, 512 Gbyte/s, 256 Gtex/s, 64 Grop/s

Each 4 CUs share 16KiB K$, and 32KiB I$ (16/chip)

 Changing shaders
Say L2 hit rate is double DRAM bandwidth: 1024 Gbyte/s (estimating, real number is different)

32KiB cache * 16/chip = 512KiB to fully fill instruction caches

Could rough estimate ability to fill instruction caches 2 million times per second

Using estimate: 100 Hz * 1000 fills of instruction cache = estimate 5% of GPU L2 hit capacity

Instruction fetch can ultimately eat against bandwidth available to do work

11 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

CACHES – MAGNITUDE OF DATA USED BY SHADER

 4-8 bytes per instruction – I$
1024 instruction shader = 4096-8192 bytes per wave

 1 byte per texel for BC3 (aka DXT5) – V$
16 images * 64 invocations * 1 byte = 1024 bytes per wave (more in practice due to over-fetch)

 8 bytes per RGBA16F image store – V$
2 image stores * 64 invocations * 8 bytes = 1024 bytes per wave (no DCC, assuming aligned output)

 16-32 bytes per descriptor – K$
16 descriptors = 256-512 bytes per wave (assuming packed and aligned)

 4 bytes per 32-bit constant – K$
64 constants = 256 bytes per wave (assuming packed and aligned)

 In order to amortize cost of {instructions, descriptors, constants}
Need a lot of reuse (hits in I$ and K$)

Want to avoid too many unique small draw/dispatch shaders

CU1
SIMD0 16KiB

V$SIMD2

SIMD1

SIMD3

CU0
SIMD0 16KiB

V$SIMD2

SIMD1

SIMD3

CU2
SIMD0 16KiB

V$SIMD2

SIMD1

SIMD3

CU3
SIMD0 16KiB

V$SIMD2

SIMD1

SIMD3

16KiB
K$

32KiB
I$

12 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

DATA CAN HAVE A RELATIVELY SHORT LIFETIME IN V$ HIERARCHY

 Using the R9 Nano as an easy example to reason about (1ns/clk)
1 GHz clock, 8192 Gflop/s, 512 Gbyte/s, 256 Gtex/s, 64 Grop/s

2 MiB L2$, 64 CUs each with 16KiB V$ and 4 SIMD

 Minimum bound on window of opportunity to hit in L2$
512 Gbyte/s can fill 2 MiB L2$ in somewhere over 4096 clock cycles

Data can have a relatively short lifetime in L2

 Can be a small window of opportunity to hit in V$
64 CUs * 16KiB V$ = 1 MiB total V$

Half the size of L2 and substantially higher bandwidth with L2 hits

Window of reuse in V$ can be very short, organize loads to maintain L1 reuse

13 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

GRAPHICS WORK DISTRIBUTION

 GCN can distribute graphics waves across the chip dynamically
For fragment shaders there is no fixed mapping of ROP tile to one CU on the chip

 GCN prefers to group fragment waves temporally on a CU for better V$ usage
For example one wave per SIMD, 4 waves/CU, before moving to another CU

Work distributer can skip over a SIMD if SIMD is too full to issue work

This can increase V$ pressure but can better maintain GPU utilization

 Vertex Shader waves are launched one per CU before moving to another CU
Prefer to not push work into VS if it requires high amounts of V$ locality

CU

SIMD0

SIMD2

SIMD1

SIMD3

Example VGPR limited at 50% wave occupancy
(5 waves/SIMD)
Only one VS wave active on the CU
Grey waves are existing waves
New blue fragment waves could only launch on 3 SIMDs

14 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

COMPUTE WORK DISTRIBUTION

 Compute shaders can enable fixed wave grouping via Workgroups
Waves of a Workgroup share one V$

Compute can be a way to increase V$ locality (use more than 4 waves/workgroup)

Can adjust wave occupancy by LDS usage, tune waves to V$ ratio for high performance

 Compute workgroups dispatched 1 per CU before moving to another CU

 Compute mixed with graphics
Keep workgroup sized to fit well concurrently with graphics shaders

 Compute alone without graphics
Running small workgroups can be bad for V$ locality

CS without using barriers: can size workgroup to fill CU

CS with barriers: size workgroup so a few fill CU

CU

SIMD0

SIMD2

SIMD1

SIMD3

15 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

WAVE LIMITS EXTENSION

 VK_AMD_wave_limits

 Possible Vulkan extension, possible usage cases,
Throttling wave per pipeline stage to better mix compute and graphics

Enabling tuning of wave to V$ ratio

Limiting execution to specific groups of CUs for better I$,K$,V$ usage

struct VkPipelineShaderStageCreateInfoWaveLimitAMD {

VkStructureType sType;

const void* pNext;

float maxPercentageOfWavesPerCu;

uint32_t* cuEnableMask; }

16 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

WAVE LAUNCH COSTS

 Costs
Mixed pipeline workloads waiting for right granularity of free CU resources

Setting USER-DATA SGPRs (preloaded scalar data before wave launches)

Wave launch building run-time generated descriptors

Root-table CBVs are 64-bit pointers converted to 128-bit descriptors at run-time

Initial SMEM loads for {constants and descriptors}

Filling the L1 caches for 1st use {shaders, constants and descriptors}

GCN4 adds shader prefetch

Deriving per-lane values used in shader execution (like lane index)

 Can amortize costs in compute by pulling lots of work before exit
Some of the most highly optimized kernels written at AMD use the “pinned workgroup” model

17 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

WAVE MULTI-ISSUE

 CU can issue to multiple functional units at the same time
But for a given clock, can only issue to functional units from different waves on the same SIMD

So prefer high enough wave occupancy as this can increase IPC (instructions per clock)

Try for good ILP (instruction level parallelism) to maximize latency hiding ability in the wave

Batch to minimize amount of latency to hide per individual load

 Example of functional units
SALU – scalar ALU

SMEM – K$ access – tens of cycles of latency

VALU – vector ALU

VMEM – V$ access – hundreds of cycles of latency

LDS – workgroup shared memory

Export – graphics shader fixed function output

loads independent ALU latency left to hide dependent ALU

may be subject to more
irregular

runtime behavior

18 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

MOVING ON TO BINDINGS AND VMEM ACCESS

 Optimizing binding

 VMEM throughput

 Shader storage buffers (aka RWStructureBuffer in the other API)

19 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

CONSTANT AND DESCRIPTOR SET DATA

 Use full cache lines
16KiB K$ / 64-byte lines = only 256 lines

Vulkan can pack 4 buffer or sampler descriptors in one cache line

Vulkan can pack 2 image descriptors in one cache line

Scattered usage can effectively be 2 to 4 times more expensive for descriptors

Scattered usage amplifies the amount of latency which needs to be hidden

Optimal to layout descriptors and constants aligned and grouped by usage

uint uint uint uint uint uint uint uint uint uint uint uint uint uint uint uint

buffer descriptor buffer descriptor buffer descriptor buffer descriptor

image descriptor image descriptor

optimal to use full cache lines

20 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

USER-DATA SGPR PRELOAD

 16 SGPRs can be pre-loaded before shader start
App does not get 16, some used for driver and for fixed function depending on pipeline state

Rest used for Descriptor Set pointers, DYNAMIC Descriptors, Root Table entries, etc

Descriptor Sets (aka Descriptor Tables) are 32-bit values (one USER-DATA SGPR)

 Warning about spilling out of USER-DATA SGPRs
Too many root entries in DirectX 12, too many Sets or DYNAMIC Descriptors in Vulkan

USER-DATA SGPRs are hardware versioned = fast

Spill can be software versioned and requires indirection = slower

21 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

HIGH FREQUENCY CHANGES

 Using the R9 Nano as an easy example to reason about (1ns/clk)
Each 4 CUs share 16KiB K$, and 32KiB I$ (16/chip)

 Levels for I$ and K$ reuse
Looking at case where shader waves get distributed 1 per SIMD (4 per CU) before next CU

16 waves sharing I$ * 64 lanes * 1 I$ = 1024 invocations

First step of reuse is maximizing single I$ reuse

16 waves sharing I$ * 64 lanes * 16 I$/chip = 16384 invocations

Next step of reuse is filling up the machine more than once

 Short running draws/dispatches want to share shader
With specialization ideally through things which fit in USER-DATA SGPRs

For example change Descriptor Set or change Push Constant in Vulkan

Keep usage of USER-DATA small to avoid launch overhead

22 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

DRAW-TO-DRAW HAZARDS

 DirectX12/Vulkan have multiple Table/Set binding points to remove hazards
Split your resources and bind Table/Set by frequency of update

 Stay far away from any binding model construct which has draw-to-draw hazards
For example OpenGL ®, DirectX 11, and KHR_push_descriptors produce hazards

Effectively one “Descriptor Set” per stage, shared across draws

API designed around updating a fraction of the “Set” between draws = hazard

Need to version the “Set” = slow

23 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

VMEM

 Optimizing vector memory access

24 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

VMEM ACCESS

 One active lane has same addressing speed limit as 64 active lanes
But could save power and cache usage

 Image accesses are done in aligned groups of 4 lanes (2x2 fragment quad)
Keep this in mind for lane layout for compute waves

Want mip level to be the same for the group of 4 lanes

The point of 4 lane grouping is to avoid V$ bank conflicts

Want the whole wave to have good 2D locality (for 2D accesses)

Ordering of the {4 lane groups} inside the wave is not as important

25 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

VMEM THROUGHPUT UPPER BOUND PER CU

 Spec peak throughput for V$ hits (perf lower in practice)
32-bit (or smaller) single-channel buffer loads / wave = 4 clocks (under specific cases)

multi-channel buffer loads / wave = 16 clocks

128-bit (or smaller) non-filtered texels / wave = 16 clocks

32-bit (or smaller) filtered texels / wave = 16 clocks

64-bit filtered texels / wave = 32 clocks

128-bit filtered texels / wave = 64 clocks

 Prefer larger granularity accesses (yellow)
Highest data/overhead ratio

Less VGPRs used for VMEM parameters for a given amount of data transferred

GPU has fixed limit on number of pending VMEM requests

26 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

IMAGE DIVERGENCE

 For 3D images sampled from all directions (SDF tracing)
Make sure to not flag for render target usage (forces possibly slower THIN tiling mode)

 Array layer divergence = no problem, no replay (fast)

 Mip divergence in quad = hardware replay loop (slow)
Addressing can only resolve one mip level per clock per 4 lanes

Coarse LOD in fragment shader forces same mip level

Watch out in other stages, can use wave operations to force same LOD

 Resource indexing divergence = software replay loop (slower)

27 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

RESOURCE INDEXING DIVERGENCE OVERHEAD AND LATENCY CHALLENGE

 Resource divergence blocks Instruction Level Parallelism (ILP)
s_mov_b64 uniformSave,EXEC
s_mov_b64 uniformRemaining,EXEC
v_lshlrev_b64 offset,index,5 // index to descriptor offset
loop:

v_readfirstlane_b32 uniformOffset,offset
v_cmpx_eq uniformOffset,offset
s_nop 5 // VALU sets EXEC required manual 5-cycle wait state (other wave can execute)
s_buffer_load_dwordx8 ...,uniformOffset // fetch the descriptor
s_waitcnt lgkm_cnt=0 // wait for descriptor to be loaded (other wave can execute)
image_sample_... // do the fetch(es)
...
s_cbranch_scc loop

s_mov_b64 EXEC,uniformSave
...
s_waitcnt 0 // wait for everything before 1st result usage (due to unknown # of fetches)

28 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

RESOURCES – SHADER STORAGE BUFFER OBJECT (SSBO)

 The ultimate memory access optimization tool on GCN

 Not limited to 64 KiB
One single descriptor can access up to 4GiB of DEVICE_LOCAL buffer memory for the app

If using SHADER_STORAGE_BUFFER_OBJECT_DYNAMIC

Descriptor is preloaded into USER-DATA SGPRs before shader executes (no indirection)

 Not limited to one type
Can do {1,2,4} component granularity accesses

Can have automatic type conversion (but limited API support right now)

 Provides {Read, Write, and Atomic} access

 In hardware same descriptor can be used in SMEM or VMEM path
Use with dynamically uniform addressing to get SMEM loads into SGPRs

29 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

SMEM BUFFER ACCESSES

 Hardware can load 1 to 16 DWORDs in one operation
GCN 3/4 added support for storing 1-4 DWORDS

 S_BUFFER_LOAD_DWORD addressing modes
[buffer descriptor base address + 20-bit unsigned byte immediate offset]

Optimal to place immediate indexed data in lower 1MiB of buffer

Good place for per-frame or per-view data

[buffer descriptor base address + 32-bit unsigned byte offset in an SGPR]

Largest fast access buffer is 4GiB in size

... up to 4GiB of push constant indexed data1MiB per-frame scalar data

30 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

SMEM BUFFER ACCESS FORMAT SUPPORT

 Formats supported when accessing via a dynamically uniform address
SALU does not have any special format conversion hardware

 {1,2,4,8,16} component 32-bit {{signed,unsigned} integer, float}

 Leave other types packed in 32-bit values
4 component 8-bit {signed,unsigned} integers

{2,4} component 16-bit {{signed,unsigned} integers, float}

 Unpack on usage later using SDWA

 Use packed on GCN5 for double rate math

31 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

VMEM TBUFFER HARDWARE FORMAT SUPPORT

 TBUFFER_<LOAD|STORE>_FORMAT_<F>
Same instructions used for vertex fetch, type provided in opcode instead of descriptor

 4-bit DFMT – Data format
{1,2,4} component {8,16,32}-bit values

{3} component 32-bit values

10:11:11

10:10:10:2

2:10:10:10

 3-bit NFMT – Numeric Format
{unorm,snorm,uscaled,sscaled,uint,sint,float}

32 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

VMEM TBUFFER FORMAT SUPPORT OVERLAPPED WITH API

 The {uint,sint,float} cases using native types or SDWA unpack for {8,16}-bit

 The unpack<Unorm|Snorm><2x16|4x8>() instructions
Covers {unorm,snorm} for multi-component {8,16}-bit values

Efficient compiler support pending (will note on GPUOpen when it arrives)

 Currently missing API or extension support for
10:11:11

10:10:10:2

2:10:10:10

33 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

VMEM BUFFER ADDRESSING

 GCN buffer addressing has more features than covered here
Including 64-bit addressing, but showing just the simplified addressing for SSBO usage here

 [descriptor base address + SGPR offset + VGPR offset + immediate offset]
48-bit base address (in descriptor)

32-bit SGPR byte offset (optional via 0 inline constant)

32-bit VGPR byte offset (optional)

12-bit unsigned immediate byte offset (included in opcode for up to 4KiB offset)

... up to 4GiB of push constant indexed data1MiB per-frame scalar data
4KiB window for
immediate offset

vector access

34 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

DIVING INTO INSTRUCTION LEVEL DETAILS

 Ship One Shader in Vulkan

 Instruction built-in features

 DPP and wave-level programming

 SDWA and packed math

35 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

GCN INSTRUCTION SET ARCHITECTURE – MAJOR REVISIONS

 GCN 1st/2nd Generation : R9 390, etc
Base for comparison

 GCN 3rd/4th Generation : R9 380, FuryX, RX480, etc (1st GPU released 2014)
SMEM now designed to support scalar memory writes

Single-rate 16-bit operations

SDWA : Sub DWord Addressing provides 8-bit and 16-bit pack/unpack on register access

DPP : Data Parallel Processing allows VALU instructions to source from another lane

V_PERM_B32

DS_PERMUTE_B32, DS_BPERMUTE_B32

 GCN 5th Generation : “Vega” Chipset
Packed 16-bit operations (double-rate)

And more ...

36 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

ADAPTING TO GPU VARIATION IN GCN AND WITH OTHER VENDORS

 Compile one shader which uses multiple extensions from multiple IHVs
Then ship this one shader!

 Leverage Vulkan SPIR-V Specialization Constants
Specialization Constants to turn on/off usage of extensions, provide subgroup size, etc

 Run SPIR-V through fast linear SPIR-V to SPIR-V filter at load-time
Set Specialization Constants based on capabilities and extensions on local machine

Trim unsupported extensions

Transform unsupported opcodes to OpUndef

SOS – Ship One Shader – Open source dependency-free C header, development in progress . . .

37 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

VULKAN AND SPIR-V SPECIALIZATION CONSTANT DETAILS

 Provide constants at PSO compile time so compiler can fold into optimizations
VkSpecializationInfo in Vk<Compute|Graphics>PipelineCreateInfo

Filled out for vkCreate<Compute|Graphics>Pipelines()

 GLSL syntax
layout(constant_id=0) const bool name = false; // sets default value

 Specialization constants can be used to size arrays, etc

38 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

DIVING INTO INSTRUCTION LEVEL DETAILS

 GCN has a variable-width ISA with 32-bit or 64-bit instructions
64-bit instructions are for VMEM and 3 operand VALU operations

GCN3 32-bit opcode modifiers trade increased flexibility for increased I$ pressure

32-bit opcode

32-bit opcode 32-bit immediate

32-bit opcode 32-bit SDWA modifier

32-bit opcode 32-bit DPP modifier

64-bit opcode

39 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

TERMS

 32-bit opcodes
VOP1 – Vector ALU Operation with 1 Source Operand

VOP2 – Vector ALU Operation with 2 Source Operands

VOPC – Vector ALU Operation Compare (2 Source Operands)

 64-bit opcodes
VOP3 – Vector ALU Operation with up to 3 Source Operands

Adds input and output modifiers

40 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

FREE DESTINATION MODIFIERS – OMOD

 Only available for 32-bit and 64-bit floating point (not supported for 16-bit)
Applies to SDWA and VOP3 (3 source) but not DPP and not packed math

 Provides free multiply on destination
dst = 0.5 * operationResult

dst = 1.0 * operationResult

dst = 2.0 * operationResult

dst = 4.0 * operationResult

 OMOD works on instructions which cannot produce denormals
COS_F32, CUBE*_F32, LOG_F32, MAD_F32, RCP_F32, RSQ_F32, SIN_F32, SQRT_F32, etc

 Otherwise OMOD is only available when denormals are in flush-to-zero mode
Default on PC Graphics APIs

41 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

FREE DESTINATION MODIFIERS – CLAMP

 GCN1/2 supports CLAMP only on floating point

 GCN3/4 supports CLAMP on integers as well

 GCN5 supports CLAMP on packed math

 CLAMP applies to SDWA, VOP3 (3 source), and packed math, but not DPP

 CLAMP on floating point = saturate(operation) = clamp(operation, 0.0, 1.0)

 CLAMP on integer stops overflow or underflow
Not exposed in any PC API as of March 2017

42 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

FREE DESTINATION MODIFIERS – CLAMPED OMOD

 CLAMP applies after OMOD

 x = clamp(2.0 * (x + y), 0.0, 1.0)

 V_ADD_F32 v1 v1 v2 mul:2 clamp

43 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

FREE INPUT MODIFIERS

 Supported for floating point inputs, separate options for each input

 Supported with SDWA and VOP3 (3 source) but not DPP
{src, -src, abs(src), -abs(src)}

 Supported with packed math on GCN5
{src, -src} with different options for {hi, lo} 16-bit value

 Better to defer these until just when needed to help the compiler out
Compiler needs to pattern match to find them

44 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

VECTOR INLINE CONSTANTS AND LITERALS

 Opcode forms, only 9-bit sources can use inline constant and literals
VOP1 (1 source): 9-bit SRC0

VOP2 (2 sources): 9-bit SRC0, 8-bit SRC1

VOPC (compare): 9-bit SRC0, 8-bit SRC1

VOP3 (3 sources): 9-bit SRC0, 9-bit SRC1, 9-bit SRC2 (no 32-bit literal support)

VOP* SDWA/DPP (2 sources): 8-bit SRC0, 8-bit SRC1

 Can only source either a 32-bit literal or a SGPR source per instruction
32-bit literals only supported on 32-bit instructions

For VOP3, can use that SGPR source in any of the 3 sources via duplication

 Any 9-bit source can use an inline constant without being synthesized
Integers: -16, -15, -14, ... 0 ... 62, 63, 64

Floating point: -4.0, -2.0, -1.0, 0.0, 1.0, 2.0, 4.0 and 1.0/(2.0*pi)

For VOP3, all 3 sources can use a different inline constant

45 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

SCALAR INLINE CONSTANTS AND LITERALS

 Can use one 32-bit literal per instruction
With exception: instructions which already include 16-bit literals

 Any source can use a inline constant without being synthesized
Integers: -16, -15, -14, ... 0 ... 62, 63, 64

Floating point: -4.0, -2.0, -1.0, 0.0, 1.0, 2.0, 4.0

Sources can use a different inline constant

46 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

WAVE-LEVEL PROGRAMMING

 Leveraging SMEM and SALU for better performance

47 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

WAVE-LEVEL PROGRAMMING

 GCN1/2
V_READ<FIRST>LANE_B32 to transfer VGPR to SGPR

DS_SWIZZLE_B32 for sourcing another lane

 GCN3 design adds faster DPP support for sourcing another lane during operation

 Parallel reductions can return dynamically uniform values
Promote VMEM to SMEM operation

Leverage SGPRs to store loads instead of VGPRs for major VGPR savings

 Can use parallel operations to minimize global atomics

48 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

WAVE-LEVEL PROGRAMMING SUPPORT

 Available now

 Vulkan
AMD_shader_ballot, ARB_shader_group_vote, ARB_shader_ballot, etc

 AGS in DirectX 11 and 12
http://gpuopen.com/gaming-product/amd-gpu-services-ags-library/

 Available in the future via SM6 in DirectX 12
https://msdn.microsoft.com/en-us/library/windows/desktop/mt733232%28v=vs.85%29.aspx

http://gpuopen.com/gaming-product/amd-gpu-services-ags-library/
https://msdn.microsoft.com/en-us/library/windows/desktop/mt733232(v=vs.85).aspx

49 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

K$ ALL THE THINGS

 Using the R9 Nano as an easy example to reason about (1ns/clk)
2 MiB L2$, 64 CUs each with 16KiB V$ and 4 SIMD

Each 4 CUs share 16KiB K$, and 32KiB I$ (16/chip)

 Data cache per wave and per invocation
80 waves / K$ and 1280 invocations / V$ @ 50% wave occupancy

16KiB K$ / 80 waves = 204.8 bytes/wave average

16KiB V$ / 1280 invocations = 12.8 bytes/invocation average

 K$ amplifies the amount of L1 cache available to work with
For example, DOOM leverages K$ for a 1.43x performance improvement

http://advances.realtimerendering.com/s2016/Siggraph2016_idTech6.pdf

Good {alignment, packing, wave operations} can enable taking advantage of K$

K$ typically requires 10x less hit latency to hide than V$ (varies, but good ballpark estimate)

http://advances.realtimerendering.com/s2016/Siggraph2016_idTech6.pdf

50 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

THE POWER OF GOING DYNAMICALLY UNIFORM

45

609

781

832

609

781

832

781

832

45

609

781

832

832 609

781

832

924

924

924

45 609 781 832

609 781 832 924

781 832 924

832

924

4 way divergent branching

4 way divergent branching

3 way divergent branching

uniform branch

uniform branch

13 paths executedpre-sorted per lane lists executed in list order things processed in iteration

45

609

781

832

609

781

832

781

832

45

609

781

832 832

609

781

832

924924 924

45

609

781

832

924

5 paths executed

uniform branch

uniform branch

uniform branch

uniform branch

uniform branch

process in “if(item==waveMin(item))” order things processed in iteration fast

51 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

THE POWER OF GOING DYNAMICALLY UNIFORM – CODE EXAMPLE

uint vgprThingIndex = FetchNextThing();

while(vgprThingIndex != 0) { // process all the things

uint sgprThingIndex = minInvocationsNonUniformAMD(vgprThingIndex); // in uniform order

if(vgprThingIndex == sgprThingIndex) {

uvec4 sgprData = FetchThingData(sgprThingIndex); // VGPR savings!

vgprThingIndex = FetchNextThing(); // reduce latency by fetching next index early

switch(sgprData.x) { // coherent branching!

45

609

781

832

609

781

832

781

832

45

609

781

832 832

609

781

832

924924 924

45

609

781

832

924

5 paths executed

uniform branch

uniform branch

uniform branch

uniform branch

uniform branch

process in “if(item==waveMin(item))” order things processed in iteration fast

52 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

DS_SWIZZLE_B32

 The first interface provided for cross-lane operations in GCN1

 Drives through LDS crossbar in hardware so requires S_WAITCNT
Higher latency than DPP, does permutation separate from any math operation

 Cluster of aligned 4 lanes
Full permutation

 Cluster of aligned 32 lanes
Controlled by 5-bit {AND,OR,XOR} masks

Can do clustered broadcast

Can do clustered mirror (reverse lanes in clusters)

Can swap pairs of clusters

 Wave of 64 lanes
Requires two V_READLANE_B32 ops to merge the two 32-lane cluster results

53 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

DPP – DATA PARALLEL PRIMITIVES

 Added on GCN3, ability to source one operand from another lane during operation
Fixed set of lane permutations on dedicated hardware fast path

Useful for building dynamically uniform values to remove divergence on GPU

Helps leveraging SMEM as a secondary L1 cache for data

OP

=

54 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

DPP DESIGN DETAILS

 VOP_DPP provides a 32-bit opcode extension DWORD

 Can be applied to 32-bit opcodes (VOP1/VOP2/VOPC)
DPP is a modifier and not an extra instruction

 Enables a collection of features
Enables sourcing SRC0 VGPR from another lane of the wave (fixed lane permutations)

Supports an immediate write mask for ROWs and BANKs which disable operation store

Supports a flag which forces invalid or disabled lanes to read zero for SRC0

Supports additional NEG/ABS control for SRC0 and SRC1

 Hardware motivation
Fixed permutations on dedicated hardware fast path

Avoids latency of going to LDS crossbar

Avoid “shuffle()” aka DS_BPERMUTE_B32 for parallel operations due to high cost

55 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

DPP DETAILS – PERMUTATIONS (WRITE MASK CAN FURTHER SHAPE THESE)

 Cluster of aligned 4 lanes
QUAD_PERM – Any permutation supported

 Cluster of aligned 8 lanes
ROW_HALF_MIRROR – Reverse all lanes

 Cluster of aligned 16 lanes
ROW_SL / ROW_SR – Shift left / right by {1 to 15} lanes

ROW_RR – Rotate right by {1 to 15} lanes

ROW_MIRROR – Reverse all lanes

ROW_BCAST15 – Broadcast 15th lane of prior cluster to next cluster

 Cluster of aligned 32 lanes
ROW_BCAST31 – Broadcast 31st lane of prior cluster to next cluster

 Full 64 lane wave
WF_SL1 / WF_SR1 – Shift left / right by 1 lane

WF_RL1 / WF_RR1 – Rotate left / right by 1 lane

56 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

DPP DISASSEMBLY EXAMPLE – WAVE MINIMUM

 Safe in divergent control flow using 8 VALU operations with DPP
s_orn2_saveexec_b64 s[4:5], 0 // save EXEC and switch to execute only on inactive lanes
v_mov_b32 v2, -1 // setup operation neutral value on inactive lanes
s_nand_b64 exec, 0, 0 // switch to full-wave execution
s_nop
v_min_u32 v2, v2, v2 row_shr:1 // first stage of 6-stage minimum reduction
s_nop // 1 clock wait state before result is valid, other wave VALU can issue here
v_min_u32 v2, v2, v2 row_shr:2
s_nop
v_min_u32 v2, v2, v2 row_shr:4
s_nop
v_min_u32 v2, v2, v2 row_shr:8
s_nop
v_min_u32 v2, v2, v2 row_bcast:15 row_mask:0xa
s_nop
v_min_u32 v2, v2, v2 row_bcast:31 row_mask:0xc
s_mov_b64 exec, s[4:5] // restore EXEC and return to set of active lanes at beginning of code block
v_readlane_b32 s4, v2, 63 // places result in SGPR

57 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

PACKING

58 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

SDWA / PACKED PREVIEW

 As of March 2017 the rest of this talk is a preview of what we are planning to bring
Both in hardware and software

Some of this may be subject to change

 Talk covers strategy for optimizing for GCN5 packed math
With backwards compatibility to previous GCN3 generation launched in 2014

Investing in packing can bring large gains on non-GCN5 hardware as well

 Watch for follow-up content on GPUOpen in 2017!
We will let you know when compiler support is ready for SDWA + packed math

59 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

PACK ALL THE VECTOR THINGS FOR HIGHER THROUGHPUT

 VGPR savings on GCN3 and up for better occupancy
Seen double digit performance improvements on some shaders as we bring up this feature

 Packed math on GCN5 for more perf per instruction
Tool to bring a VALU limited shader back to being bandwidth bound

Advantage dependent on shader

Once bandwidth bound, possibility to try to trade more VALU for less bandwidth

Compress all the things

60 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

PACKING STRATEGIES – VULKAN EXAMPLE

Unpacked 32-bit

// 4 VGPR per result (GCN1/2)

// 3 ops per result (GCN1/2)

float s,t,u,v;

s = min(s, -u);

t = min(t, u);

v = s*t;

AoS 16-bit Packing

// 2 VGPR per result (GCN3/4/5)

// 3 ops per result (GCN3/4)

// 2 ops per result (GCN5)

f16vec2 st,uv;

st = min(st, f16vec2(-uv.x, uv.x));

uv.y = st.x * st.y;

SoA 16-bit Packing

// 2 VGPR per result (GCN3/4/5)

// 3 ops per result (GCN3/4)

// 1.5 ops per result (GCN5)

f16vec2 ss,tt,uu,vv;

ss = min(ss, -uu);

tt = min(tt, uu);

vv = ss * tt;

61 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

PACKED MATH GENERAL STRATEGIES – MIX AND MATCH

 Work in Array of Structures (AoS) form
Each lane does the work for only one instance of computation

Leverage packed operations for pair of similar components (like XY then ZW)

Leverage packing to get reduced VGPR count for better occupancy

Harder to get gains due to less chances to pack

 Work in Structure of Arrays (SoA) form
Each lane does work for two instances of shader in parallel

One instance works in the low 16-bit word (x), the other in the high 16-bit word (y)

Easier to get gains, trivial to pack, but can have some amount of transpose overhead

Leverage included swizzle to broadcast in cases where both instances source same data

Factor transpose into a prior store so data access is already in SoA form

62 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

VULKAN AND DIRECTX 12 PACKING OVERVIEW

 Both APIs
For constant buffers pre-pack 16-bit constants on CPU into uints

Manually typecast in-shader literal constants to 16-bit in high-level shading language

 Vulkan
Use native 16-bit types via AMD_gpu_shader_half_float

“Ship One Shader” to target any GPU (GCN3/4/5 or other vendor) with one shader

Windows ® 7 through Windows 10 support

 DirectX 12
Use AMD’s GPUOpen shader header to get functions to typecast uint to/from packed types

Do not use built-in dot() and normalize(), instead write out manually to avoid FXC issues

Use one shader permutation to target GCN3/4/5

Windows 10 support

63 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

GCN3/4/5 16-BIT OPERATION AND CONSTANTS

 Constants need to enter the shader already packed
Otherwise there can be higher VGPR pressure and VALU overhead

Constants are often single-use so really do not want extra VALU overhead per constant

 Constants are loaded via scalar loads and stay in SGPRs
Scalar ALU does not have floating point operations (nor conversions)

 Run-time packing of constants requires two VALU operations
This moves packed constants into VGPRs

Which is quite bad for register usage and can negates gains

 For low frequency constants
Send packed and unpacked in same buffer, use Ship One Shader to adapt at load-time for GPU

32-bit constants

packed
16-bit versions

same buffer

64 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

DIVING INTO INSTRUCTION LEVEL DETAILS

 Pack/unpack support starts on GCN3 with SDWA

65 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

SDWA – SUB DWORD ADDRESSING

 Added on GCN3, ability to unpack do an operation and repack in 1 clock

16-bit

8-bit

32-bit

= op

DESTINATION SOURCE 0 SOURCE 1

66 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

SDWA OPCODE MODIFIER

 Applicable to 32-bit VOP1/VOP2/VOPC instructions (2 source operand max)

 VOP_SDWA is a 32-bit opcode extension DWORD
[7:0] SRC0 – VGPR for src0

[10:8] DST_SEL – Select where to pack: byte {0,1,2,3} or word {0,1} or dword {0}

[12:11] DST_UNUSED – Select preserve or overwrite unused bits (with zero or sign extend)

[13] CLAMP – For floating point, optional clamp to [0.0, 1.0]

[18:16] SRC0_SEL – Select where to unpack: byte {0,1,2,3} or word {0,1} or dword {0}

[19] SRC0_SEXT – For integers, select zero or sign extension on unpack

[20] SRC0_NEG – For floating point, optional source negation

[21] SRC0_ABS – For floating point, optional source absolute value (before optional negation)

[26:24] SRC1_SEL – Select where to unpack: byte {0,1,2,3} or word {0,1} or dword {0}

[27] SRC1_SEXT – For integers, select zero or sign extension on unpack

[28] SRC1_NEG – For floating point, optional source negation

[29] SRC1_ABS – For floating point, optional source absolute value (before optional negation)

16-bit

8-bit

32-bit

= op

DESTINATION SOURCE 0 SOURCE 1

67 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

SDWA FOR INTEGERS

 For 8-bit and 16-bit integers both signed and unsigned
Provides bitfieldInsert() for any 8-bit or 16-bit aligned value in DST

Provides zero or sign-extend 8-bit or 16-bit output to 32-bit DST

Provides shift left by {8,16,24}-bits when 8-bit output extended to 32-bit DST

Provides shift left by 16-bits when 16-bit output extended to 32-bit DST

Provides bitfieldExtract() for any 8-bit or 16-bit aligned value in SRC0

Provides bitfieldExtract() for any 8-bit or 16-bit aligned value in SRC1

 Keep data packed until usage for 32-bit integer operations

 Repack intermediate data to save VGPRs

 Keep dynamically uniform values 32-bit (SALU does not have SDWA)

68 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

SDWA FOR INTEGERS – DISASSEMBLY

 Simple Vulkan shader example
#version 450
layout(set=0,binding=0,std430) buffer ssbo { int a[64]; int b[64]; int c[64]; };
layout(local_size_x=64,local_size_y=1) in;
void main() { c[gl_LocalInvocationID.x]=

bitfieldExtract(a[gl_LocalInvocationID.x],8,8)+
bitfieldExtract(b[gl_LocalInvocationID.x],0,16); }

 Disassembly fragment
BUFFER_LOAD_DWORD v1 v0 s[0:3] 0 offen

BUFFER_LOAD_DWORD v2 v0 s[0:3] 0 offen offset:256

S_WAITCNT vmcnt(0)

V_ADD_U32 v1 vcc sext(v1) sext(v2) src0_sel:BYTE_1 src1_sel:WORD_0

BUFFER_STORE_DWORD v1 v0 s[0:3] 0 offen offset:512

69 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

SDWA FOR FLOATING POINT

 Unlike integer, SDWA for 16-bit float needs to use 16-bit float operations

 Extends VOP1/VOP2/VOPC to have some VOP3 features
Provides optional saturate() on DST

Provides optional ABS then optional NEG on any combination of SRC0 and SRC1

70 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

GCN3/4 16-BIT OPERATION SUPPORT

 AMD_gpu_shader_half_float

 Single-rate 16-bit float support
{ADD, CEIL, COS, CVT*, DIV, EXP, FLOOR, FMA, FRACT, INTERP, LDEXP, LOG, MAC,
MADAK, MADMK, MAX, MIN, MUL, RCP, RNDNE, RSQ, SAD, SIN, SQRT, TRUNC, ... etc }

 Single-rate 16-bit integer support
Specialized 16-bit integer instructions {ADD, MAD, MAX, MIN, SHL, SHR, SUB, ... etc }

Plus using SDWA with 32-bit ops for others

 SDWA supplies the ability to swizzle source and destination
d.y = a.x * b.y;

 Aim to provide register file savings

71 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

GCN3/4 VMEM AND PACKING

 GCN3/4 VMEM unit works with 32-bit addressing and 32-bit value return(s)
Can pack after return with one VALU op

V_CVT_PKRTZ_F16_F32 packed, source0, source1

 For non-filtered it is possible to freely alias 32-bit as packed pair of 16-bit
Or as a packed quad of 8-bit integer values

 128-bit RGBA32U format can be an 8-channel format with aliasing
Or a 16-channel format for 8-bit integer values or mix and match across the 128-bits

WZYX

72 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

GCN5 PACKED 16-BIT MATH – DOUBLE RATE OPERATIONS

 Signed and unsigned 16-bit: {ADD, MAD, MAX, MIN, SHR, SUB}

 16-bit integer: {MUL, SHL}

 16-bit float: {ADD, FMA, MAX, MIN, MUL}
Non-double rate 16-bit operations work similar to GCN3/4 using SDWA

SDWA is built into 16-bit VOP3 ops on GCN5

 Packed math includes optional source swizzle and optional floating point negate
d.xy = a.xx * b.xy + c.yx;

d.xy = min(a.yx, b.xx);

d.xy = f16vec2(-a.x,a.y) + f16vec2(-b.y,-b.y);

 Packed math includes optional clamp, aka saturate()
d.xy = clamp(a.xy * b.yy + c.xx, 0.0, 1.0);

73 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

GCN5 PACKED 16-BIT VECTOR BUFFER INSTRUCTIONS

 Supported on signed/unsigned 8-bit and 16-bit memory accesses
Option to load into or store from the lower 16-bits of VGPR

Option to load into or store from the upper 16-bits of VGPR

These memory accesses use Structure of Arrays interface

 Supported on larger granularity {32,64,96,128}-bit accesses
Option to load into or store from packed values, two 16-bit values per VGPR

These memory accesses use Array of Structures interface

74 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

GCN5 VECTOR IMAGE INSTRUCTIONS

 Image instructions support both 32-bit and packed 16-bit float coordinates
In the 16-bit case one VGPR provides 2 coordinates

 Image instruction support both 32-bit and packed 16-bit data
In the 16-bit case one VGPR has 2 channels of data

 Can mix and match, for example 32-bit coordinates with packed 16-bit return

 This is an Array of Structures interface
AoS to SoA transpose can be done with two VALU operations total for the 4 16-bit values

0 1 2 3 4 5 6 7,=0 1 4 5

0 1 2 3 4 5 6 7,=2 3 6 7

75 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

FP16 AS IMAGE COORDINATES

 Precision is better closer to zero

 The {0.5 to 1.0} range has 1024 values

 Using {0.0 to 1.0} can represent 2048 values with same precision

 Using {-0.5 to 0.5} can represent 4096 values with same precision (leverage wrap)
Highest precision option to represent coordinates

256x256 image has 1/16 sub-texel worst case precision

512x512 image has 1/8 sub-texel worst case precision

1024 1024 1024...

0.0 1.0

...10241024

0.5-0.5

76 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

PACKED 16-BIT FLOATS IN HLSL

 HLSL challenges
The ‘min16float’ type is 16-bit but has 32-bit alignment (useless for constants)

The ‘half’ type is actually 32-bit

HLSL also does not have bitfieldExtract(), etc

 HLSL workarounds
Manual CPU-side pack/unpack into ‘uint’ for constant and buffer data

GPU-side unpack compiler pattern matches complex pattern and transform into NOP

min16float2 UnpackFP16(uint a) { return min16float2(f16tof32(uint2(a & 0xFFFF, a >> 16))); }

16-bit literals need to be manually typecasted before being used (FXC issue)

a.xy = sqrt(1.0 - a.xy*a.xy); // do not use this, FXC promotes to 32-bit

a.xy = sqrt(min16float2(1.0) - a.xy*a.xy); // use this instead

Avoid built-in dot() and normalize(), write manual version

77 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

WAITING FOR OTHER PLAYERS

 Special thanks to
AMD for allowing me to disclose and talk hardware details

AMD Vulkan team for exposing the hardware

Axel, Billy, Jean, and Tiago at idSoftware for pushing the hardware

Graham Wihlidal for showing people how to use all the GCN things

And many others who have been a great source of inspiration over the years

. . .

 Follow-up at Timothy.Lottes@amd.com

mailto:Timothy.Lottes@amd.com

78 GDC 2017 | ADVANCED SHADER PROGRAMMING ON GCN

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions

and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited

to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no

obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and

to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or

changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO

RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR

PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER

CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS

EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2017 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of

Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. DirectX is a registered trademark of Microsoft Corp.

Other names are for informational purposes only and may be trademarks of their respective owners.

