
Deep Dive:
Asynchronous Compute

Stephan Hodes
Developer Technology Engineer, AMD

Alex Dunn
Developer Technology Engineer, NVIDIA

2

Joint Session

AMD
● Graphics Core Next (GCN)

● Compute Unit (CU)

● Wavefronts

NVIDIA
● Maxwell, Pascal

● Streaming Multiprocessor (SM)

● Warps

3

Terminology

Asynchronous: Not independent, async work shares HW

Work Pairing: Items of GPU work that execute simultaneously

Async. Tax: Overhead cost associated with asynchronous compute

4

Async Compute  More Performance

5

3D 3D

COMPUTE COMPUTE

3 Queue Types:

● Copy/DMA Queue

● Compute Queue

● Graphics Queue

All run asynchronously!

Queue Fundamentals

COPY COPY

6

● Always profile!
● Can make or break perf

● Maintain non-async paths
● Profile async on/off

● Some HW won’t support async

● ‘Member hyper-threading?
● Similar rules apply

● Avoid throttling shared HW resources

General Advice

3D

COMPUTE

COPY

7

Regime Pairing

(Technique pairing doesn’t have to be 1-to-1)

Good Pairing

Graphics Compute

Shadow Render
(Geometry

limited)

Light culling
(ALU heavy)

Poor Pairing

Graphics Compute

G-Buffer
(Bandwidth

limited)

SSAO
(Bandwidth

limited)

8

 - Red Flags

Problem/Solution Format

Topics:
● Resource Contention -

● Descriptor heaps -

● Synchronization models

● Avoiding “async-compute tax”

9

Hardware Details -

● 4 SIMD per CU

● Up to 10 Wavefronts scheduled per SIMD

● Accomplish latency hiding

● Graphics and Compute can execute simultanesouly on same CU

● Graphics workloads usually have priority over Compute

10

Problem: Per SIMD resources are shared between Wavefronts

SIMD executes Wavefronts (of different shaders)

● Occupancy limited by
●# of registers

●Amount of LDS

●Other limits may apply…

● Wavefronts contest for caches

 Resource Contention –

11

● Keep an eye on vector register (VGPR) count

● Beware of cache thrashing!
● Try limiting occupancy by allocating dummy LDS

GCN VGPR Count <=24 28 32 36 40 48 64 84 <=128 >128

Max Waves/SIMD 10 9 8 7 6 5 4 3 2 1

 Resource Contention –

12

Hardware Details -

Maxwell
Static SM partitioning

Pascal
Dynamic SM partitioning

• Compute scheduled breadth first over SMs
• Compute workloads have priority over graphics

• Driver heuristic controls SM distribution

Idle

Graphics

Compute

SM
Distribution

Time

13

Problem: HW only has one – applications can create many

Switching descriptor heap could be a hazard (on current HW)

● GPU must drain work before switching heaps

● Applies to CBV/SRV/UAV and Sampler heaps

● (Redundant changes are filtered)

● D3D: Must call SetDescriptorHeap per CL!

Descriptor Heap -

14

Avoid hazard if total # descriptors (all heaps) < pool size

Driver sub-allocates descriptor heaps from large pool

Pool sizes (Kepler+):
● CBV/UAV/SRV = 1048576

● Sampler = 2048 + 2032 static + 16 driver owned

● NB. [1048575|4095]  [0xFFFFF|0xFFF]  (packed into 32-bit)

Descriptor Heap -

15

 Synchronization

GPU synchronization models to consider:

● Fire-and-forget

● Handshake

CPU also has a part to play

● ExecuteCommandLists (ECLs) schedules GPU work

● Gaps between ECLs on CPU can translate to GPU

16

 Fire-and-Forget (Sync.)

● Work beginning synchronized via fences

0

0
GPU

Fn  ∞

Signal

Wait Good Pairing

17

 Fire-and-Forget (Sync.)

● Work beginning synchronized via fences

● But, some workloads vary frame-to-frame

● Variance leads to undesired work pairing

● Impacts overall frame time as bad pairing impacts performance

0

0
GPU

Fn  ∞

Signal

Wait Bad Good

18

● Similar situation – CPU plays a role here

GPU

Fn  ∞

Signal

0

Wait

0

Good Pairing

 CPU Latency (Sync.)

19

● Similar situation – CPU plays a role here

● Game introduces latency on the CPU between ECLs

● Latency translates to GPU

● Leads to undesired work pairing, etc…

GPU

Fn  ∞

Signal

0

Wait

0

Latency
Bad Good

 CPU Latency (Sync.)

20

1

● Synchronize begin and end of work pairing

● Ensures pairing determinism

● Might miss some asynchronous opportunity (HW manageable)

● Future proof your code!

0

0
GPU

Fn  ∞

Signal

Wait

1

Signal

Wait

 Handshake (Sync.)

21

CPU isn’t innocent, keep an eye on it

Two GPU synchronization models:
● Fire-and-Forget 

●Cons: Undeterministic regime pairing

●Pros: Less synchronization == more immediate performance (best case scenario)

● Handshake 
●Cons: Additional synchronization might cost performance

●Pros: Regime pairing determinism (all the time)

Synchronize for determinism (as well as correctness)

 Synchronization - Advice

22

 Async. Tax

Overhead cost associated with asynchronous compute

● Quantified by: [AC-Off(ms)] / [Serialized AC-On (ms)] %
●serialize manually via graphics API

● Can easily knock out AC gains!

23

CPU:
● Additional CPU work organizing/scheduling async tasks

● Synchronization/ExecuteCommandLists overhead

GPU:
● Synchronization overhead

● A Difference in work ordering between AC-On/Off

● Different shaders used between AC-On/Off paths

● Additional barriers (cross-queue synchronization)

 Async. Tax – Root Cause

24

First: determine if CPU or GPU is the bottleneck (GPUView)

CPU:
● Count API calls per frame, compare AC-On/Off for differences

● Measure differences through per-thread profiling

GPU:
● Compare GPU cost of shaders for AC-On/Off

● Inspect difference contributors

 Async. Tax – Advice

25

Tools

● API Timestamps: Time enable/disable async compute

● GpuView: (PTO)

26

GPU View #1

GRAPHICS

COMPUTE

COPY

• Using 3D, Compute, Copy

• Frame boundaries @ Flip
Queue packets

• Compute overlapping
graphics per-frame

27

GPU View #2 - Markers

NB. Open with, ctrl + e

Description
• Time: GPU accurate
• DataSize: size in bytes of Data
• Data: Event name emitted

PIXBegin/EndEvent
• Byte Array  ASCII/Unicode
• Manual step 

28

GPU View #3 - Events
CPU Timeline:

ID3D12Fence::Signal
• DxKrnl – SignalSynchronizationObjectFromCpu
ID3D12Fence::Wait
• DxKrnl – WaitForSynchronizationObjectFromCpu

GPU Timeline:

ID3D12CommandQueue::Signal
• DxKrnl – SignalSynchronizationObjectFromGpu
ID3D12CommandQueue::Wait
• DxKrnl – WaitForSynchronizationObjectFromGpu

29

Thanks \0

Questions?

@AlexWDunn - adunn@nvidia.com

Stephan.Hodes@amd.com

mailto:adunn@nvidia.com
mailto:Stephan.Hodes@amd.com

