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Depth of Field



Depth of Field Optics

Pinhole Camera

Film Tiny hole

Real Camera
Wikipedia, User Hanabi123, 

CC BY-SA 3.0

http://creativecommons.org/licenses/by-sa/3.0/


Thin Lens Model

Lens focuses a distance onto 
film (blue in this case)

f = focal length

A = aperture width

c = circle of confusion (CoC) on film

C = CoC in world Film

From Wikipedia “Circle of Confusion”



Gather Methods
Input (in focus)

For each output:
What do we see?

Output

for i,j:

CoC = f ( z(i,j) – zInFocus ) 

Out_ij = Gather( CoC );

Sharp edge

Focus

Film Too 
Close

Overlap
Green COC
Blue in focus



Scatter Methods
Where does each 
input go?

Input (in focus) Output

for i,j:

CoC = f ( z(i,j) – zInFocus ); 

Spread( Input_ij, CoC );

Draw a sprite for 
each input pixel



Gather from SAT

Compute Summed Area Table

Gather with 4 lookups



Summed Area Table
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Gather SAT

Niceness

● O(1) in filter size

Problems

● Box filter

● Gather method

● Precision Problem



Fast Filter Spreading

● Fast Filter Spreading and its Applications
Kosloff, Hensley, Barsky, UC Berkeley tech report.

● Scatter Method

● SAT in reverse

● Poke (add) deltas at the corners

● Then sum



Simple Example
Desired Result

1 1

1 1 2 2

2 2

+ =

1 1

1 3 2

2 2



1 -1

-1 1

2 -2

-2 2

+ =

1 -1

2 -2

-1 1

-2 2

Simple Example
Adding Deltas
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Simple Example
Summing for the result



Still Only 4 Each

1 -1

2 -2

-1 1

-2 2

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 3 3 2 2

1 1 1 3 3 2 2

2 2 2 2
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Bartlett

1 -2 1

-2 4 -2

1 -2 1

2 integrations

1 -1 0

-1 1 0

0 0 0

After 1st

integration



Implementations

DOF FX
Simple demo

Open source

Ladybug
Big demo

Closed source



Implementation Topics

● Weights and Normalization

● Fixed point math

● Atomics



Weights and Normalization

● Box filter: divide by area

● Bartlett: divide by area*area

● Other filters/weights possible  

● Catch all:

● Accumulate weights in alpha

● Divide at the end



Fixed Point Math

● Atomics

● Precision

● Scale examples @ ~ 64 x 64, 32 bits 

● 6*2 (box area) = 12 bits -> 20 remaining

● 6*4 = 24 bits -> 8 remaining

● 6*3 = 18 bits -> 14 remaining



Compute Shader Sample
// Scale for fixed point and filter size

int4 intColor = normalizeBlurColor(float4(vColor, 1.0), blur_amount);

for (int i = 0; i < 9; ++i)

{

// Offset the location by location of the delta and padding

// Need to offset by (1,1) because the kernel is not centered

const int2 delta = bartlettData[i].xy * (blur_amount + 1);

int2 bufLoc = loc.xy + delta + padding + uint2(1, 1);

// Filter weight

const int delta_value = bartlettData[i].z;



Compute Shader Sample
for (int i = 0; i < 9; ++i)

{

// Offset (previous slide)

// Weight (previous slide)

// Write the delta

// Use interlocked add to prevent the threads from stepping on each other

// 4 atomics, including alpha channel for normalization.

InterlockedAddToBuffer(deltaBuffer, bufLoc, intColor * delta_value);

}



Results

64x64 48x48

22x22



DOF FX Performance

● RadeonTM RX 480

● ~5 ms for 1080 p

● ~3 ms for 1080 p with quarter res

● Looking for further optimizations



Results

64x64

8x8

16x16

40x40

32x32

64x64

24x24

64x64 = 4k / pixel



DOF FX Performance

● RadeonTM RX 480

● ~5 ms for 1080 p

● ~3 ms for 1080 p with quarter res

● Looking for further optimizations



Depth of Field



Summary

● Scatter based DOF

● Fixed, but high-ish overhead

● Limited by precision

● Source available soon



Questions?
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