
Cinematic Depth Of Field
How to make big filters cheap

Karl Hillesland
Sean Skelton
AMD

Outline

● Depth of Field

● Real-time approximations

● Fast Filter Spreading

● Implementation

Depth of Field

Depth of Field Optics

Pinhole Camera

Film Tiny hole

Real Camera
Wikipedia, User Hanabi123,

CC BY-SA 3.0

http://creativecommons.org/licenses/by-sa/3.0/

Thin Lens Model

Lens focuses a distance onto
film (blue in this case)

f = focal length

A = aperture width

c = circle of confusion (CoC) on film

C = CoC in world Film

From Wikipedia “Circle of Confusion”

Gather Methods
Input (in focus)

For each output:
What do we see?

Output

for i,j:

CoC = f (z(i,j) – zInFocus)

Out_ij = Gather(CoC);

Sharp edge

Focus

Film Too
Close

Overlap
Green COC
Blue in focus

Scatter Methods
Where does each
input go?

Input (in focus) Output

for i,j:

CoC = f (z(i,j) – zInFocus);

Spread(Input_ij, CoC);

Draw a sprite for
each input pixel

Gather from SAT

Compute Summed Area Table

Gather with 4 lookups

Summed Area Table

D

(x,y) contains

𝑖=0

𝑥

𝑗=0

𝑦

𝐼𝑖,𝑗

(𝑥, 𝑦)

A

Gather from SAT

=

B

C

D

𝑥0 𝑥1

𝑦0

𝑦1

𝑆𝐴 − 𝑆𝐵 −𝑆𝐶 +𝑆𝐷
𝑆𝐴 =

𝑖=0

𝑥1

𝑗=0

𝑦1

𝐼𝑖,𝑗 𝑆𝐵 =

𝑖=0

𝑥1

𝑗=0

𝑦0

𝐼𝑖,𝑗

𝑥1𝑦0

𝑥1𝑦1

Gather SAT

Niceness

● O(1) in filter size

Problems

● Box filter

● Gather method

● Precision Problem

Fast Filter Spreading

● Fast Filter Spreading and its Applications
Kosloff, Hensley, Barsky, UC Berkeley tech report.

● Scatter Method

● SAT in reverse

● Poke (add) deltas at the corners

● Then sum

Simple Example
Desired Result

1 1

1 1 2 2

2 2

+ =

1 1

1 3 2

2 2

1 -1

-1 1

2 -2

-2 2

+ =

1 -1

2 -2

-1 1

-2 2

Simple Example
Adding Deltas

1 -1

2 -2

-1 1

-2 2

1 1

2 2

-1 -1

-2 -2

1 1

1 3 2

2 2

Simple Example
Summing for the result

Still Only 4 Each

1 -1

2 -2

-1 1

-2 2

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 3 3 2 2

1 1 1 3 3 2 2

2 2 2 2

2 2 2 2

Bartlett

1 -2 1

-2 4 -2

1 -2 1

2 integrations

1 -1 0

-1 1 0

0 0 0

After 1st

integration

Implementations

DOF FX
Simple demo

Open source

Ladybug
Big demo

Closed source

Implementation Topics

● Weights and Normalization

● Fixed point math

● Atomics

Weights and Normalization

● Box filter: divide by area

● Bartlett: divide by area*area

● Other filters/weights possible

● Catch all:

● Accumulate weights in alpha

● Divide at the end

Fixed Point Math

● Atomics

● Precision

● Scale examples @ ~ 64 x 64, 32 bits

● 6*2 (box area) = 12 bits -> 20 remaining

● 6*4 = 24 bits -> 8 remaining

● 6*3 = 18 bits -> 14 remaining

Compute Shader Sample
// Scale for fixed point and filter size

int4 intColor = normalizeBlurColor(float4(vColor, 1.0), blur_amount);

for (int i = 0; i < 9; ++i)

{

// Offset the location by location of the delta and padding

// Need to offset by (1,1) because the kernel is not centered

const int2 delta = bartlettData[i].xy * (blur_amount + 1);

int2 bufLoc = loc.xy + delta + padding + uint2(1, 1);

// Filter weight

const int delta_value = bartlettData[i].z;

Compute Shader Sample
for (int i = 0; i < 9; ++i)

{

// Offset (previous slide)

// Weight (previous slide)

// Write the delta

// Use interlocked add to prevent the threads from stepping on each other

// 4 atomics, including alpha channel for normalization.

InterlockedAddToBuffer(deltaBuffer, bufLoc, intColor * delta_value);

}

Results

64x64 48x48

22x22

DOF FX Performance

● RadeonTM RX 480

● ~5 ms for 1080 p

● ~3 ms for 1080 p with quarter res

● Looking for further optimizations

Results

64x64

8x8

16x16

40x40

32x32

64x64

24x24

64x64 = 4k / pixel

DOF FX Performance

● RadeonTM RX 480

● ~5 ms for 1080 p

● ~3 ms for 1080 p with quarter res

● Looking for further optimizations

Depth of Field

Summary

● Scatter based DOF

● Fixed, but high-ish overhead

● Limited by precision

● Source available soon

Questions?

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and
typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product
and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences between
differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise
correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the
content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR
ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE
OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2017 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced
Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of
their respective owners.

