
Tamas Rabel
Lead Graphics Programmer

HOW WE RETHOUGHT DEVICE ABSTRACTION

• The abstraction we had
• Problems we faced
• A better way™
• Profit
• Results

AGENDA

• The abstraction we had

AGENDA

• Started as a thin layer based on DX9
• Updated to match DX10 later

• Abstracts methods / calls

• Not the rendering process itself

THE ABSTRACTION WE HAD

Game

OLD PIPELINE

Game Nodes

OLD PIPELINE

Game Nodes

OLD PIPELINE

Rigid

Terrain

Texture

VFX

Game Nodes

OLD PIPELINE

Rigid

Terrain

Texture

VFX

Game Nodes Device

OLD PIPELINE

Rigid

Terrain

Texture

VFX

Game Nodes Device

DX12

DX11

OGL

OLD PIPELINE

Rigid

Terrain

Texture

VFX

Game Nodes Device

DX12

DX11

OGL

OLD PIPELINE

Rigid

Terrain

Texture

VFX

Game Nodes Device

DX12

DX11

OGL

Rigid

Terrain

Texture

VFX

OLD PIPELINE

• Problems we faced

AGENDA

Game Nodes Device

Rigid

Terrain

Texture

VFX

DX12

DX11

OGL

OLD PIPELINE

Game Nodes Device

Rigid

Terrain

Texture

VFX

DX12

DX11

OGL

OLD PIPELINEWORK ITEMS

• Minimum data required to describe a single
bit of rendering work
• Inputs

• Outputs

• Program(s)

• As generic as possible
• Not necessarily GPU work

• Fully self-contained

Rigid

Terrain

Texture

VFX

DX12

DX11

OGL

OLD PIPELINE

Game Nodes Device

Rigid

Terrain

Texture

VFX

DX12

DX11

OGL

OLD PIPELINE

Game Nodes Device

Rigid

Terrain

Texture

VFX

DX12

DX11

OGL

OLD PIPELINE

Game Nodes Device

RESOURCES AND INSTANCES

• “Resource” can be anything
• Black box for the client code

• Can have different implementations
per-platform or even per-run

• May have instances (see later)

• Long lifetime

• Doesn’t necessarily reside in memory
for its whole lifetime

• Texture, shader, model, etc.

Rigid

Terrain

Texture

VFX

OLD PIPELINE

Game Nodes

RESOURCES AND INSTANCES

• “Instance”
• of a resource

• Is transient

• Black box for the client code

• Handled by the same code as the resource

• An instance of a model rendered in
the current frame for example

(contd.)

Rigid

Terrain

Texture

VFX

OLD PIPELINE

Game Nodes

RESOURCES AND INSTANCES

• Handles
• set(colour_handle, colour::red);

• get(colour_handle)

• Internally a handle is an offset into instance
memory

• Only way for clients to access resources
and instances

• NOP if the given instance or resource
doesn’t have the requested parameter

• Type checked in debug

(contd.)

Rigid

Terrain

Texture

VFX

DX12

DX11

OGL

OLD PIPELINE

Game Nodes Device

RESOURCES AND INSTANCES

• Handles
• set(colour_handle, colour::red);

• get(colour_handle)
• Internally a handle is an offset into instance

memory
• Only way for clients to access resources

and instances

• NOP if the given instance or resource
doesn’t have the requested parameter

• Type checked in debug

Rigid

Terrain

Texture

VFX

DX12

DX11

OGL

OLD PIPELINE

Game Nodes Device

Rigid

Terrain

Texture

VFX

DX12

DX11

OGL

OLD PIPELINE

Game Resource Mgr

Rigid

Terrain

Texture

VFX

DX12

DX11

OGL

OLD PIPELINE

Game Resource Mgr

Game Resource Mgr

Rigid

Terrain

Texture

VFX

DX12

DX11

OGL

NEW PIPELINE

High Level Low Level

• Results

AGENDA

RESULTS – TW:WARHAMMER

RESULT – TW:WARHAMMERTW:WARHAMMER

• Average of 25 000 unique instances

• Single-threaded workflow with certain
jobs multithreaded

• 13.5 ms on i7-4790K @ 4GHz

RESULTS –WARSCAPE NEXT

RESULTS –WARSCAPE NEXTWARSCAPE NEXT

• Stress test of 125 000 unique instances

• Almost 100% core usage
• 9 ms on i7-4790K @ 4GHz

• Last ~1.5ms is waiting for GPU

• High level code completely separated from
low-level, no assumptions made

• Low level code has full control over
decisions

PROFIT

• Instance data
• Legacy

• Each work item is a draw call

• DX11

• Meshes are grouped by material

• Transform and floats are instance data

• Textures are not instance data

• One draw call per material group

LOW LEVEL DECISIONS EXAMPLE

• Instance data
• DX12

• Textures become instance data thanks to
bindless

• One draw call per shader

• Per-triangle culling / triangle soup
processing can be added without any
changes to high level code

LOW LEVEL DECISIONS EXAMPLE
(contd.)

• Give as much context to the low-level code
as possible

• Don’t make any assumptions on the
high-level, keep all options open

• Don’t be afraid to generalize and
abstract things as longs as you don’t
compromise performance!
(that’s the tricky part)

• Thin wrappers over API are not the
best option anymore

CONCLUSION

THANK YOU

www.creative-assembly.com

