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Terms

● Lane [DX] / Invocation [VK]

● A single shader invocation (thread) within the wave

● Wave [DX] / Subgroup [VK]

● Collection of shader invocations where amount varies per vendor

● Wave [DX] execution model : all lanes execute simultaneously and in lock-step

● Subgroup [VK] execution model : subgroup operations include implicit barrier

● Dynamically Uniform = same across all active lanes

wave / subgroup

.........

lane / invocation



Be aware that some intrinsics only work on active lanes/invocations!  

if() statement

only triggers for some lanes

Terms

wave / subgroup

.........

All lanes / invocations 
active

wave / subgroup

.........

Subset of lanes / 
invocations active



Benefits of Wave Programming

● Faster synchronization of threads within a wave

● Reduced use of barrier-/interlocked-intrinsics

● For some cases

● Simpler shader code

● Easier to maintain

● Easier to write

● More control over DFC coherency

● Helps to improve flow coherency

● Helps to improve memory access coherency



Wave Operations

● Available in Compute and Pixel shaders [DX], all stages* [VK]

● Share data between threads

● Categories (details to follow)

● Query – Get data about a single thread

● Vote – Compare values across a wave

● Broadcast – Share with all threads in the wave

● Reduce – Wave-level sum, product, bitwise, min/max, etc. 

● Scan & Prefix 

● Global ordered append

● Quad - Read & swap with neighbors in a quad – DX Pixel Shader Only

* Quad-shuffle and helper lane operations available only in DirectX pixel shaders



Wave Operations

● Portable D3D12 [DX]

● Expected to be provided via SM6 (talk covers details from preview spec online)

● Operations supported in CS and PS

● Portable Vulkan [VK]

● Currently provided by a collection of portable KHR extensions

● Operations supported in all shader stages*

● Vendor-Specific Extensions

● Vendors provide increased functionality (not covered in this talk)

● AMD supports D3D11/D3D12 via AGS, and AMD extensions in Vulkan

● NV supports D3D11/D3D12 via NVAPI, and NV extensions in Vulkan

* Quad-shuffle and helper lane operations available only in DirectX pixel shaders



Core Functionality

● Next slides highlight some of the core wave-programming constructs

● Not enough time to include everything

● See detailed specs for the full list. The links below are a good starting point

● D3D12 Shader Model 6 Preview 

● https://msdn.microsoft.com/en-
us/library/windows/desktop/mt733232%28v=vs.85%29.aspx

● Vulkan Supports GLSL ARB Extensions
● https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_shader_group_vote.txt

● https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_shader_ballot.txt

https://msdn.microsoft.com/en-us/library/windows/desktop/mt733232(v=vs.85).aspx
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_shader_group_vote.txt
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_shader_ballot.txt


Queries

● WaveGetLaneCount() [DX] / gl_SubGroupSizeARB [VK]

● The number of lanes in a wave (typically 32 [NV] and 64 [AMD])

● WaveLaneIndex() [DX] / gl_SubGroupInvocationARB [VK]

● Returns the index of the shader invocation’s lane in the wave / subgroup

● WaveIsHelperLane() [DX] / gl_HelperInvocation [VK]

● In a pixel / fragment shader, returns true if shader invocation is used only for 
derivatives (ddx, ddy) for the quad

● WaveOnce() [DX Only] Only run code for one lane

wave / subgroup

.........

index = 1 index = WaveGetLaneCount() - 1



Broadcast

● WaveReadFirstLane() [DX] / readFirstInvocationARB() [VK]

● Fetch value at first active lane in wave

● Safe in divergent control flow and safe for non-full waves

● WaveReadLaneAt() [DX] / readInvocationARB() [VK]

● Fetch value at specific lane in wave (lane index needs to be uniform across the wave HG) 

● Safe only when shader knows a specific lane will be active

wave / subgroup

.........

1st active lane inactive lane



Vote

● WaveAnyTrue() [DX] / anyInvocationARB() [VK]

● Returns true if any active lane has a true value

● WaveAllTrue() [DX] / allInvocationsARB() [VK]

● Returns true only if all active lanes have a true value

● WaveAllEqual() [DX] / allInvocationsEqualARB() [VK]

● Returns true if all active lanes have the same value

wave / subgroup

.........

yellow = true blue = false, WaveAllTrue() returns false



Ballot

● WaveBallot() [DX] / ballotARB() [VK]

● Returns bit array packed into an unsigned 64-bit integer

● Bit array representing a bool value across the wave, one bit per lane

● Bit is 0 when lane is inactive or value=false or lane > wave size

● Bit is 1 when lane is active and value=true

● LSB of return starts with lane 0

wave / subgroup

.........

blue = false, WaveBallot() returns {1,0,0,1,1,1,0,0,1,1 ... 0,0,0}



Parallel Reductions

● WaveAll<Op>() [DX]
● Applies an associative operation across all active lanes in the wave

● All active lanes have same final result

● <Op>=Sum computes the sum of the value across all active lanes

● For floating point, precision of the result can vary across implementations
● Ordering of operations is implementation dependent

● Operation may be computed on hardware by a parallel reduction including multiple passes

● Available in Vulkan via extensions

wave / subgroup

.........

For uint ‘value’ WaveAllMin(value) = 0

3 9 0 5 2



Parallel Prefix Operations 

● WavePrefixSum() [DX]
● Returns sum of value across all active lanes with a lower lane index

● Result is unique per lane – stored in VGPR

● Operation also known as “SCAN”

● Available in Vulkan via extensions

wave / subgroup

.........

WavePrefixSum() returns 0,1,4,4,6 ... one output/lane starting with lane index=0

1 3 0 2 2



Don‘t Code for Fixed Lane Count

● Can‘t assume same lane count on every GPU
● D3D12_FEATURE_DATA_D3D12_OPTIONS1.WaveLaneCountMin [DX]

● gl_SubGroupSizeARB [VK]

● WaveGetLaneCount() [HLSL]

● Write flexible shaders that deal with differing lane counts
● Minimize instruction divergence and data divergence

● Waves are 32 wide on NVIDIA GPUs
● Recast problem to use 32 lanes whenever possible!

● Waves are 64 wide on AMD GPUs
● Recast problem to use 64 lanes whenever possible!



Wave Programming Use Cases I

● Wave programming can reduce DFC divergence or memory divergence

Check these references for details:

● Reducing divergence can increase memory locality on NVIDIA

● NVIDIA Optix uses wave ops for prioritized scheduling for a 1.25x perf improvement

● http://www.highperformancegraphics.org/previous/www_2009/presentations/nvidia-rt.pdf

● Dynamically uniform values and loads leverage scalar hardware on AMD

● Hardware has a separate scalar {ALU pipe, registers, cache} for dynamically uniform data

● DOOM uses wave ops for a 1.43x performance improvement

● http://advances.realtimerendering.com/s2016/Siggraph2016_idTech6.pdf

http://www.highperformancegraphics.org/previous/www_2009/presentations/nvidia-rt.pdf
http://advances.realtimerendering.com/s2016/Siggraph2016_idTech6.pdf


● Choose optimized paths if in divergent and non-divergent control flow

● Make sure to test performance/register pressure ramifications on all target GPUs

● May leverage scalar hardware on AMD GCN

Wave Programming Use Cases II



● Choose path if it is important for enough lanes in the wave

● Make sure to test performance/register pressure ramifications on all target GPUs

● May leverage scalar hardware on AMD GCN

Wave Programming Use Cases II



Wave Programming Use Cases III

● Parallel prefix operations can be used to reduce Global Atomics

● WavePrefixSum [DX], future extension [VK]

● WavePrefixProduct [DX], future extension [VK]

● Example for fully-active, wave-granularity compute shader



Wave Programming Use Cases IV - Reductions

● Just use WaveAll*() right?

● Sort of

● Remember, wave size varies between device 
and vendor!



A 16x16 Reduction - Option 1

groupshared float3 g_center[4*(64/LANE_COUNT)]; // AMD 4 / NVIDIA 8

[numthreads(4/(64/LANE_COUNT),16,4*(64/LANE_COUNT)] // AMD 4x16x4 / NVIDIA 2x16x8

void main(...)

{

... // compute position

float3 center = (0.0f).xxx, total = WaveAllSum( position ); 

if( WaveGetLaneIndex() == 0 )

g_center[GroupThreadID.z]=total;

GroupMemoryBarrierWithGroupSync();

[unroll]for(int i=0; i< 4*( 64/LANE_COUNT ); ++i) // // AMD 4 / NVIDIA 8

center += (1.0f/(16.0f*16.0f)) * g_center[i];

...

}



A 16x16 Reduction - Option 2

[numthreads(4/(64/LANE_COUNT),16,1] // AMD 4x16x1 / NVIDIA 2x16x1

void main(...)

{

float3 position[4*(64/LANE_COUNT)]; // AMD 4 / NVIDIA 8

... // compute each position[i]

float3 center = (0.0f).xxx; 

[unroll] for( int i = 0; i < 4*(64/LANE_COUNT); ++i ) // AMD 4 / NVIDIA 8

center += (1.0f/(16.0f*16.0f)) * WaveAllSum( position[i] );

...

}



Which Option is fastest?

● Test and benchmark to find out

● Benchmark on all relevant GPUs

● Test for correctness on all relevant GPUs

● Limiters/Mileage will vary

● Register pressure

● Occupancy



Usecases V - Scans

●Just use WavePrefix*() right?

●Sort of, remember that max lane counts vary



8 wide Scans => by 2x4 wide Scans

1 2 3 4

5 6 7 8

WaveAllAdd()

0 1 3 61 2 3 4
WaveAllAdd()

5 6 7 8 10 15 21 28

0 1 3 6

WaveAllAdd()
0 5 11 18



8 wide Scans => by 2x4 wide Scans

1 2 3 4

5 6 7 8

WavePrefixSum()

0 1 3 61 2 3 4
WavePrefixSum()

5 6 7 8 10 15 21 28

0 1 3 6

+
WavePrefixSum()

10 15 21 28



64 wide Scan

[numthreads(LANE_COUNT,X,Z)] // 64 AMD, 32 NVIDIA

void main(...)  

{  // 64/LANE_COUNT => 1 AMD, 2 NVIDIA

float scanRes[64/LANE_COUNT], value[64/LANE_COUNT]; 

...

for(int i = 0; i < 64/LANE_COUNT; ++i ) value[i] = ...;

for(int i = 0; i < 64/LANE_COUNT; ++i ) scanRes[i] = WavePrefixSum(value);   

if( LANE_COUNT < 64 ) {

ScanRes[1] += WaveReadLaneAt( scanRes[1], LANE_COUNT–1 )+

WaveReadLaneAt( value[0],   LANE_COUNT–1 ); }

...   

} And now imagine a 128 wide Scan !



Q&A
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