
DOMINIK BAUMEISTER & DR. MATTHÄUS G. CHAJDAS

CONCURRENCY MODEL IN
EXPLICIT GRAPHICS APIS

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 2

WHO WE ARE

Dr. Matthäus G. Chajdas

5 years at AMD

Developer Technology Architect

Dominik Baumeister

3 years at AMD

Developer
Technology
Engineer

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 3

• Give a (slightly) more in-depth look for people interested in graphics programming

• Prepare the mental model for explicit graphics APIs (DirectX12®, Vulkan®)

GOALS

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 4

• Our program executes on the CPU

• Shaders can run as part of a Draw() or Dispatch() execution on the GPU

• CPU and GPU are physically separate entities (even in case of an integrated GPU, they‘re
separate blocks on the chip)

BASICS

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 5

• What would happen if a Draw() would be executed immediately on the GPU
(i.e., like calling a function)

• Of course not what we would like to see

NAIVE VIEW

Draw 0

Draw 0 Draw 1

Draw 1

Draw 2

Draw 2

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 6

• In addition, „immediately“ is actually „quite some time later“ in practice
as the commands have to be sent via a message across the bus

NAIVE VIEW

Draw 0

Draw 0 Draw 1

Draw 1

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 7

• Instead: Keep most of the commands somewhere in memory

• Accumulate a lot of them (ideally enough to keep the GPU busy for a while)

• Then „Submit“ them to the GPU

COMMAND RECORDING

Draw 0Draw 1Draw 2Draw 3

Command Buffer

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 8

• Again, we‘re running into the same challenge (conceptually):

• CPU is working hard to create the commands, meanwhile the GPU is idle

• Then GPU is working hard to execute the commands, meanwhile the CPU is idle

COMMAND RECORDING

Draw 0Draw 1Draw 2Draw 3

Command Buffer

Draw 0Draw 1Draw 2Draw 3

Command BufferSubmit

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 9

• How can I detect these cases? – GPUView (https://graphics.stanford.edu/~mdfisher/GPUView.html)

SERIAL EXECUTION

Present

token

Submission

on GPUPresent

GPU work

Submission

on CPU
CPU

work

https://graphics.stanford.edu/~mdfisher/GPUView.html

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 10

• Reminder: GPU and CPU are separate entities with their own timeline and resources. They
don‘t necessarily run in sync!

• This means in practice you actually have to do additional work to sync them up
(and thus to generate the pathological case shown before ☺)

SERIAL EXECUTION

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 11

• The CPU tells the GPU where to find
the commands in memory via a ring buffer

• The CPU can then move on to do
some meaningful work while GPU
executes the commands

• Possibly the CPU is submitting
more command buffers,
even though the GPU is
still churning on the first one

RING BUFFER

CPU write pointer

GPU read pointer

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 12

• In GPUView (https://graphics.stanford.edu/~mdfisher/GPUView.html)

• :

OVERLAPPING EXECUTION

https://graphics.stanford.edu/~mdfisher/GPUView.html

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 13

• Benefits: GPU and CPU can work in parallel

• Drawbacks:

• Can‘t overwrite command buffers that are already in flight

• Can‘t overwrite constants that are already in flight

• Can‘t change/destroy textures and buffers that are currently in use

OVERLAPPING EXECUTION

Command Buffer

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 14

• The solution is buffering

BUFFERING

Command Buffer 0 Command Buffer 1 Command Buffer 2 Command Buffer 3

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 15

• Keep multiple copies of your

• Command buffers

• Descriptors

• Small objects that describe your buffers & textures

• Memory address, size, mip level count, swizzle …

• Constant buffers

• Most of that is done for you on older APIs

• On recent, explicit APIs you are responsible to do that yourself

BUFFERING

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 16

• Now suppose our CPU is really really fast
or in more general terms:
Executing work on the GPU
takes a lot longer than on the CPU

• GPU View – again
(https://graphics.stanford.edu/~mdfisher/GPUView.html)

• Tripple (quadruple, …) buffering?

• Can help with smoother experience

• At the expense of latency
= time from user input to image on screen

• Can‘t do this forever

• Usually games do double or triple buffering

BUFFERING

Queued

Frames

No Gaps

https://graphics.stanford.edu/~mdfisher/GPUView.html

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 17

• At some point we need to know when the GPU has finished executing some work

• This is done via Fences

• If done correctly – ~ once a frame – this does not cause serial bottlenecks

SYNCHRONIZATION - FENCES

Fence 0 Fence 1 Fence 2

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 18

• Now: What should we do if we want to read data from GPU memory on the CPU?

• Screenshots

• Timestamps for profiling

• Occlusion queries (ever wondered where the white/black flashes in some games come from?)

• We don‘t want to sync with the latest frame, this would bring us back to square one
= CPU and GPU running serialized

• Instead, the CPU should continue performing useful work and periodically poll the GPU when
the frame is complete

READBACK

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 19

• Leaving the realm of the CPU, we‘re now on the GPU

• Reads the pointer to the command buffer from the ring buffer

• Interprets the commands in the stream

COMMAND PROCESSOR

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 20

• Schedules them for the respective queues

• There are Graphics Queues

• And Compute Queues

• More parallelism!

COMMAND PROCESSOR

Graphics

Queue

Compute

Queue

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 21

• Different synchronization domains

• But share the same ALUs, registers

• For that reason they are useful to overlap ALU heavy work with fixed function heavy work

• Two ALU limited workloads on different queues will likely not run faster than on a single queue

• But for example shadow map creation (rasterizer limited) and ambient occlusion (ALU limited)
go hand in hand pretty well

QUEUES

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 22

QUEUES
Radeon GPU Profiler

https://gpuopen.com/rgp/

https://gpuopen.com/rgp/

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 23

• Again, somehow have to make sure that two queues can be synchronized:
Done using Semaphores (Vulkan) or Fences (D3D12).

• Semaphores can be signalled and waited on

• They have some overhead – both on CPU and GPU

• GPU has to fill up again (from the very front of the pipeline)

• OS on the CPU makes sure that you cannot deadlock the GPU
i.e., avoid that one application can make the whole system unresponsive

SEMAPHORES

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 24

SEMAPHORES
Radeon GPU Profiler

https://gpuopen.com/rgp/

https://gpuopen.com/rgp/

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 25

• Now to the actual execution in the shader core

• Loads of vector units (execute in lock step)

• Bunched up in Compute Units (execute independently from each other)

• „Dual Compute Unit“ – Radeon™ RX 5700 XT contains 20 of those → 2560 hardware threads
in total

SHADER CORE

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 26

• For full utilization we want to avoid synchronous execution as much as possible.

• Imaging a huge GPU with thousands of ALUs
and then your triangles cover a single pixel.
99% of the GPU would idle.

SHADER CORE

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 27

• APIs require draw calls to be issued in the order they have been submitted

• They also require the results to become visible in the order they have been submitted

• GPUs go to great lengths to execute in parallel while maintaining the illusion of serial execution

• This can cause interesting (correct) behavior.

• Imagine two triangles not overlapping:
The later one can finish before the first.

PARALLEL EXECUTION

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 28

• Stalls execution until all remaining work on the same queue has been done.

BARRIERS

Radeon GPU Profiler

https://gpuopen.com/rgp/

PS: This is bad practice, FidelityFX SPD (https://gpuopen.com/fidelityfx-spd/) shows how to do it better.

Number of workitems in flight (Occupancy)
Barriers

https://gpuopen.com/rgp/
https://gpuopen.com/fidelityfx-spd/

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 29

• Handle visibility operations
i.e., possibly insert cache flushes to make contents of L0 caches visible to other compute units

BARRIERS

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 30

• There is more parallelism: the Graphics Pipeline is well… a pipeline

• The different stages for a Draw/Dispatch run (partly) in serial,
but new work can already start while old work items are still being executed

• More on GPUOpen: https://gpuopen.com/learn/vulkan-barriers-explained/

BARRIERS

https://gpuopen.com/learn/vulkan-barriers-explained/

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 31

• Lots of relevant information
on GPUOpen
https://gpuopen.com

• Including practical tools like
the Radeon GPU Profiler
https://gpuopen.com/rgp/

• RDNA
https://gpuopen.com/documentation/

• Keeping your GPU fed without getting bitten
https://www.khronos.org/assets/uploads/developers/library/2017-khronos-uk-vulkanised/004-Synchronization-Keeping%20Your%20Device%20Fed_May17.pdf

• Breaking down Barriers
https://therealmjp.github.io/posts/breaking-down-barriers-part-1-whats-a-barrier/

• A trip through the graphics pipeline
https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/

• GPU View
https://graphics.stanford.edu/~mdfisher/GPUView.html

FURTHER READS

https://gpuopen.com/rgp/
https://gpuopen.com/rgp/
https://gpuopen.com/documentation/
https://www.khronos.org/assets/uploads/developers/library/2017-khronos-uk-vulkanised/004-Synchronization-Keeping%20Your%20Device%20Fed_May17.pdf
https://therealmjp.github.io/posts/breaking-down-barriers-part-1-whats-a-barrier/
https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
https://graphics.stanford.edu/~mdfisher/GPUView.html

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RD, 2020 32

DISCLAIMER

DISCLAIMERS

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been
taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no
obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect
to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of
noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other
products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document.
Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in
AMD's Standard Terms and Conditions of Sale. GD-18

Use of third-party marks / products is for informational purposes only and no endorsement of or by AMD is intended or implied. GD-83

AMD Radeon FreeSync requires a monitor and AMD Radeon™ graphics, both with FreeSync support. Seewww.amd.com/freesync for
complete details. Confirm capability with your system manufacturer before purchase. GD-127

© 2020 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Radeon and combinations thereof are trademarks of
Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Windows and DirectX are registered trademarks of Microsoft
Corporation in the US and other jurisdictions. Vulkan and the Vulkan logo are trademarks of Khronos Group Inc. Other names are for
informational purposes only and may be trademarks of their respective owners.

