@ RADEON R(Z;N AMDA\

CONCURRENCY MODEL IN
EXPLICIT GRAPHICS APIS

DOMINIK BAUMEISTER & DR. MATTHAUS G. CHAJDAS

AMDA

GPUQOpen

WHO WE ARE

Dr. Matthaus G. Chajdas Dominik Baumeister
S years at AMD 3 years at AMD
Developer Technology Architect
Developer
Technology
Engineer

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

GOALS

Give a (slightly) more in-depth look for people interested in graphics programming
Prepare the mental model for explicit graphics APIs (DirectX12®, Vulkan®)

Vulian.

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

BASICS

Our program executes on the CPU
Shaders can run as part of a Draw() or Dispatch() execution on the GPU

CPU and GPU are physically separate entities (even in case of an integrated GPU, they‘re
separate blocks on the chip)

AMDZ

GPUOpen TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

NAIVE VIEW

What would happen if a Draw() would be executed immediately on the GPU
(i.e., like calling a function)

A

Draw O Draw 1 Draw 2

Draw O Draw 1 Draw 2

\ 4 \ 4
© e)

Of course not what we would like to see

AMDZ

GPUOpen TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

NAIVE VIEW

In addition, ,immediately” is actually ,quite some time later” in practice
as the commands have to be sent via a message across the bus

Draw 0O Draw 1

AMDZ
2RD
GPUOpen TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

COMMAND RECORDING

Instead: Keep most of the commands somewhere in memory
Accumulate a lot of them (ideally enough to keep the GPU busy for a while)
Then ,Submit® them to the GPU

S Draw ODraw 1 Draw 2Draw 3

Command Buffer

AMDZ

GPUOpen TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

COMMAND RECORDING

Again, we're running into the same challenge (conceptually):
CPU is working hard to create the commands, meanwhile the GPU is idle
Then GPU is working hard to execute the commands, meanwhile the CPU is idle

°9 Draw ODraw 1Draw 2Draw 3

Command Buffer

Draw ODraw 1 Draw 2Draw 3

®\
®)

Command Buffer

AMDZ

GPUOpen TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

SERIAL EXECUTION

[] [] I =={
GPU work I | |] |] |

Flip Queue [0]
Owerlay

Present
token

[] AMDR CPU Submission o

GPUOpen

work on CPU

https://graphics.stanford.edu/~mdfisher/GPUView.html

SERIAL EXECUTION

Reminder: GPU and CPU are separate entities with their own timeline and resources. They
don‘t necessarily run in sync!

This means in practice you actually have to do additional work to sync them up
(and thus to generate the pathological case shown before ©)

AMDZ1
TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

GPUOpen

RING BUFFER

The CPU tells the GPU where to find
the commands in memory via a ring buffer

The CPU can then move on to do
some meaningful work while GPU
executes the commands

Possibly the CPU is submitting
more command buffers,

even though the GPU is

still churning on the first one

&4 CPU write pointer
W GPU read pointer

AMDZ

GPUOpen TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

OVERLAPPING EXECUTION

In GPUView (https://graphics.stanford.edu/~mdfisher/GPUView.html)

https://graphics.stanford.edu/~mdfisher/GPUView.html

OVERLAPPING EXECUTION

Command Buffer

Benefits: GPU and CPU can work in parallel

Drawbacks:
Can'‘t overwrite command buffers that are already in flight
Can't overwrite constants that are already in flight
Can‘t change/destroy textures and buffers that are currently in use

AMDZ

GPUOpen TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

BUFFERING

The solution is buffering

Command Buffer 1 Command Buffer 2 / Command Buffer 3

Command Buffer O

AMDZD1

GPUOpen TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

BUFFERING

Keep multiple copies of your
Command buffers

Descriptors
Small objects that describe your buffers & textures
Memory address, size, mip level count, swizzle ...

Constant buffers
Most of that is done for you on older APIs
On recent, explicit APIs you are responsible to do that yourself

AMDZ

GPUOpen TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

Flip Queue [0]

BUFFERING i

Now suppose our CPU is really really fast
or in more general terms:

Executing work on the GPU

takes a lot longer than on the CPU

/< /{71 [| [|

‘ — —

__I 0§y |
ORNNNRN SNNNNNNeN RRNNNNNNNY RNNNNNINNNY §

===
===

(20418) MultipleFrames|nFlight.zse)

GPU View — again
(https://graphics.stanford.edu/~mdfisher/GPUView.html)
Tripple (quadruple, ...) buffering?

Can help with smoother experience

At the expense of latency Queued
= time from user input to image on screen Erames

Can‘t do this forever

Usually games do double or triple buffering

||||||
AMDZ

GPUOpen TU MUNICH | CONCURRENCY MODEL IN E

https://graphics.stanford.edu/~mdfisher/GPUView.html

SYNCHRONIZATION - FENCES

At some point we need to know when the GPU has finished executing some work
This is done via Fences

If done correctly — ~ once a frame — this does not cause serial bottlenecks

READBACK

Now: What should we do if we want to read data from GPU memory on the CPU?
Screenshots

Timestamps for profiling
Occlusion queries (ever wondered where the white/black flashes in some games come from?)

We don‘t want to sync with the latest frame, this would bring us back to square one
= CPU and GPU running serialized

Instead, the CPU should continue performing useful work and periodically poll the GPU when
the frame is complete

AMDZ

GPUOpen

TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

COMMAND PROCESSOR

Leaving the realm of the CPU, we‘re now on the GPU
Reads the pointer to the command buffer from the ring buffer
Interprets the commands in the stream

Command
Processor

COMMAND PROCESSOR

Schedules them for the respective queues
There are Graphics Queues
And Compute Queues

More parallelism!

Graphics
Queue
Command
Processor
Compute
Queue

QUEUES

Different synchronization domains

But share the same ALUSs, registers

For that reason they are useful to overlap ALU heavy work with fixed function heavy work

Two ALU limited workloads on different queues will likely not run faster than on a single queue

But for example shadow map creation (rasterizer limited) and ambient occlusion (ALU limited)
go hand in hand pretty well

AMDZ

GPUOpen TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

Radeon GPU Profiler
® https://gpuopen.com/rgp/

QUEUES

Frame summary =
System activity
Barriers Visualize command buffer submission and synchronization primitives.
T et ' GPU-based frames [# Workload views [" CPU submission markers [I Zoom to selection [Reset zoom [O °
Frame 698 L] Command buffers Frame 699] Detailed GPU events | Frame 701 " Frame 702
Context rolls Sync objects
25.000 ms a 30,000 ms 32,500 ms 35,000 ms 37.500 ms 40,000 ms 42,500 ms 45,000 ms 47.500 ms 50.000 ms 52,500 m:
[Sequential
Render/depth targets | | | | | | |
Cebeneen b e Geu enly |||__|||__|||

Device configuration
Graphics queue

vkQueuePresentkKHR.{) vkQueuePresentkKHR.{)
vkSemaphoreWait{0x1
VkSemaphoreWait{0:

vkQuev
kSemaphoreWait{0x 12ae33afefl)

kSemaphoreWait{Dx 1)

kSemaphoreWait{Dx 12ad7afc5e0) m

I :
\l‘kSernaIl vkSemaphoresignal(0x 12ae33afbo0) Vk vkSemaphoreSignal(0x 12ae33afef0)
vkSema | VkSemaphoreSignal(0x 122 33b0d90) -.us| WkSemaphoreSignal{Ox 12ad7afc5el)
Queues @ueueSubmit{Z} QueueSubmit{2) Wks QueuesSubmit{2) Wk
hkSemal kSemaphaore\Wait{0x 1180y vkSemaphoreWWait{0x 12ae33b1330) kSemaphoreWait(0x12ae33b0910)
QueueSlI QueueSubmit\H) QueueSubmit(4) vk QueueSsubmit(4) ﬁ |
emap O 1 Qe 0x12a3e33b0cT0 Qg 0x12ae [i) Q|
ks M‘Sanq::l'mre.'imd(/k t al 33b0c70) VkSemaphoreSignal{l 33b18d0)
QueueSt ||k QUeueSubmlt{l} \lksl QueueSubmit{1) Wks QueueSubmit{1) Wk |\t
hksemard kg QL.IE | vkSemaphoreWait{0x kSemaphoreWWait{0x 12ae33b00 10) QL
wkQueuePresentkHR. i LeLePresentkHR 1 ueuePresentkHR kS LeuePrg
kQ 0 = kD 0 i kQ 0 kQ
:SemaphoreWait{0x12ae33afefl) | |1 vkSemz phaoreWait{0x 33 ! naphare\Wait{D: =) VkSEmaphoreWait(Unl’-‘.-.aeSSaﬂ)QU} ukl erS“_-'—'
VkSemaphoreWait{0x 12ad7afc5e0) I| E phoreWWait{0x12a233b0d90) || VkSemaphoreWait{0x 12ad 7afc5e0) ! |\0|<5 kSemaphoreWait(0x 12z 33b0d90) ﬁ| lvks :Semapha
WksSemaphoreSignal(0x 12ae 33afefl) I|| QueVkSemzphereSignal{0x 12ae33atha0) || IQut‘\ﬂc‘Sﬂnq:hnmSg’ld(lezaeﬁafem] QuivkSemaphoreSignal{0x 12ae33afho0) m" PuePkSemapho-

ks ﬁﬂﬁaﬂmeﬁmd(oxﬂaeﬂodso] lﬂcllﬁﬁkSemapho-

WkSemaphoreSignal(0x 12ad 7afc5e0) || m:sanamnresimal(oxuaeﬂodso] -.1<s|| vkSemaphoresignal{0x 12ad7afc5e)

QueueSubmit{Z) ||QutPueueE ubrmit{2) 'Jk'il |QutPueueSubmit{2} Wks QuuPueueSubmit{Z) 'Jk| PueQueueSubrr
I|\||G kSemzphoreWait{ix 12ae33b1330) Qe I|\||G semaphoreWWait{0x Sb0910) L0l | vk SemaphoreWait{0x 12ae 33b 1330) QL Ilvksr'—-'—
Queuesubmit(4) I||Qu:PueueEubmlt(4) g Qu:PueueSubmit(‘!) QuuPueueSubmlt(‘!) WlpuepueueSubn‘
H
Compute queue i
:
i VkSer VkSemaphoreSignal (0x 12a¢
I 0 I 0 i Queu QueuesSubmit{1)
vkSemaphoreSigr yksemaphoreSignal(0x 122233009 vk -eSignal(0x 122e33b1330) Pasana;mresmalmxmexmsm)
I 0 I 0 WkSema| Queuesubmit{1) WkSemaphoreSignal(0x12ae33b1330) (IQueueSubmit(l) WkSemaphoreSignal (0x 12ae33b09 10) PueueSubmit(l) VkSemaphoreSignal{0x 12ae33b61330) PueueSubmlt{l) WkSemaph
Queues =l el SAE QueueSubmit{1) | emaphoreWait(0x12a skl IQueueSubmit{1) VkSemaphoreWait{0x 122 33b0c70) QueueSubmit{1) V ¢ :
£ >

Graphics Compute omas [lwait [l sional [Present o
Submit time: 32.934 ms | Submit duration: 10.803 ms | Enqueue duration: 10.803 ms | GPU duration: 0.000 ms | 28.368 ms

https://gpuopen.com/rgp/

SEMAPHORES

Again, somehow have to make sure that two queues can be synchronized:
Done using Semaphores (Vulkan) or Fences (D3D12).

Semaphores can be signalled and waited on

They have some overhead — both on CPU and GPU
GPU has to fill up again (from the very front of the pipeline)

OS on the CPU makes sure that you cannot deadlock the GPU
l.e., avoid that one application can make the whole system unresponsive

AMDZ

GPUOpen TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

Radeon GPU Profiler
® https://gpuopen.com/rgp/

SEMAPHORES

Frame 5303 | Detailed GPU events [Frame 5905

000 ms 53.000 ms 54.000 ms 55.000 ms 56.000 ms 57.000 ms 58.000 ms 53.000 ms 60,000 ms 61.000 ms 62.000 ms 63.000 ms 64,000 ms 65.000 ms 66,000 ms 67.000 ms 63.000

IIIIII|IIIIIIIII|WIIIII|IIIIIIIII|IIIIII

Graphics queue

[0x17eb2 [0x17eb2d72dd0] VkSemaphoreSignal

[245249] [248577] VkCommandBuffer

[23618] v [Dx17eb2d72b90] VkSemaphore [23622] YkCommandBuffer [0x17eb2d72dd0] VkSemaphoresSi
[23616] ¥ [245249] VkCommandBuffer [23620] WkCommandBuffer [248577] VkCommandBuffer
[243969] [23618] YkCommandBuffer [247297] WkCommandBuffer [236232] YkCommandBuffer [c
DESESE [23616] WkCommandBuffer [0x17eb2d72830] vkSemaphareWait [23620] WkCommandBuffer [

[243457] | [2435969] YkCommandBuffer [246785] WkCommandBuffer | [247297] VkCommandBuffer [z

L2 EUIN [0x17eb2d72550] VkSemaphore| | [246273] VkCommandBuffer [0x17eb2d72830] VkSemaphoreWl

[244393] [243457] VkCommandBuffer [248321] VkCommandBuffer [246785] VkCommandBuffer | [z |

|MQ.|E.|EPresa1N-R 33be96fl] vkSemaphareWsait [246273] vkCommandBuffer E |\.1Q.|mepresmuqﬂ

[0x17eb2d72b90] VkSemay [245505] WkCommandBuffer | [248321] VkCommandBuffer [2| [0x17eb2d72dd0] WS
[0x17eb2d72ba0] ‘HI:Sanq| vkQueuePresentHR [247809] VkCommandBuffer : VkSemaphore\WilH [0x17eb2d72dd0] \II:S&| wi
[245249] VkCommandBuffe fIESEE e e) RIS [0x17e33bea110] VkSemaphoreSignal [245505] VkCommandBuffer I [ZI [248577] VkCommandE

I [23618] VkCommandBuffer | [0x17eb2d72ban] \llc';anl vkQueuePresentiHR [245761] vkCommandBuffer [247809] vkCommandBuffer E I [23622] VkCommandB [[d

[23616] VkCommandBuffer [245249] VkCommandBui | [ESE= s e =l RUEEE T LT vkQueuePresentHR [0x17e33bealll] VkSemaphoresSi [2| | [23620] YkCommandBe [3

[0x17e33 [242177] VkCommandBuffer
[242433] [244481] VkCommandBuffer
vkQueuel [0x17233bealll] VkSemaphore

[242433] VkCommandBuffer |[243969] YkCommandBuffe [23618] VkCommandBuff |[0x17eb2d72ba0] VkSemaphoreSignal [0x17eb2d72b30] VieSemaphoreWait [245761] VkCommandBuffer [z |[24?297] VkCommandE [3
[ﬂxlkhﬂ|vh@md’msmtlﬂ-ﬁ ESEE B RUEENE [23616] VkCommandBuff [245249] VkCommandBuffer [0x17eb2d72b90] VkSemaphoreSignal |‘|I|Q.IEI.IEP!ESEI’IM‘R. [GI [0x17eb2d72830] WkS

[241921] IRV
[23614] v [Ox17=b2d72dd0] vkSemaphor I
[23612] v [241921] VkCommandBuffer I|
[240641] [23614] VkCommandBuffer |
[23612] YkCommandBuffer 4
[24011!]|[24054ﬂ VkCommandBuffer | |[244481] (el [0x17e33beg6f0]

[243457] \."kCommandBuFFe| [243969] VkCommandBul [23618] VkCommandBuffer [245249] YkCommandBuffer [0x17eb2d72b30] VkSemaphorevlip I [246785] \.l'kCommandE| [4
[242945] VkCommandBuffe fRESEE SR RIEEEY [23616] YkCommandBuffer [23618] VkCommandBuffer [0x17eb2d72ba0] \'Iasﬂ'na:i‘mreﬁl wh | [246273] VkCommandE E
[244293] VkCommandBuffe [243457] h'kCommandBuiI [243969] VkCommandBuffer [23616] VkCommandBuffer [245249] VkCommandBuffer E| |[243321] vkCommandE [3
[243969] VkCommandBuffer [23618] YkCommandBuffer [Gl [0x17e33beg6fl] VS

naphoreWait [23616] YkCommandBuffer [

[245505] \.l'kCommandE| [2
A [242945] YkCommandBuffer [243457] VkCommandBuffer | [243969] VkCommandBuffer I | [247809] VkCommand] E

Compute queue

[242689] VkCommandBuffer [246017] VkCommandBuffer
33bealll] YkSemaphaoreWait [242583] VkCommandBuffer | x17233be v naphore\Wait [246017] YkCommandBy

>

Graphics Compute DMA .Wait .Signal .Present o
Submit time: 50.685 ms | Submit duration: 6.335 ms | Enqueue duration: 5.135 ms | GPU duration: 1.200 ms | 52.047 ms

https://gpuopen.com/rgp/

SHADER CORE

15
KS

Now to the actual execution in the shader core

Loads of vector units (execute in lock step)

Bunched up in Compute Units (execute independently from each other)

,Dual Compute Unit®* — Radeon™ RX 5700 XT contains 20 of those - 2560 hardware threads

In total
Addresser

SALU SIMD32 SALU SIMD32 L
LDS
Texture
SALU SIMD32 SALU SIMD32

0$

0S

Texture Data

SHADER CORE

For full utilization we want to avoid synchronous execution as much as possible.

Imaging a huge GPU with thousands of ALUs
and then your triangles cover a single pixel.
99% of the GPU would idle. c

AMDZ

GPUOpen TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

PARALLEL EXECUTION

APIs require draw calls to be issued in the order they have been submitted
They also require the results to become visible in the order they have been submitted

GPUs go to great lengths to execute in parallel while maintaining the illusion of serial execution
This can cause interesting (correct) behavior.

Imagine two triangles not overlapping:
The later one can finish before the first.

AMDZ

GPUOpen TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

Radeon GPU Profiler
® https://gpuopen.com/rgp/

BARRIERS

Stalls execution until all remaining work on the same queue has been done.

IIIIII|IIIIIIIIII|IIIIIIIII|IIIIIIIIII|IIIIIIIII|IIIIIIIIII|IIIIIIIII|IIIIIIIIII|IIIIIIIII|IIIIIIIIII|IIIIIIIII|IIIIIIIIII|IIIIIIIII|IIIIIIIIII|IIIIIIIII|IIIIIIIIII|IIIIIIIII|IIIIIIIIII|IIIIIIIII|IIIIIIIIII|IIIIIIIII|I.IIIIIIII|IIIIIIIII|IIIIIIIIII|IIIIIIIII|IIIIIIIIII|IIIIIIIII|IIIIIIIIII|IIIIIIIII|IIIIIIIIII|IIIIIIIII|IIIIIIIIII|IIIIIIIII|IIIIIII;
9
: _ \ Number of workitems in flight (Occupancy)
£ Barriers

‘ \

Color by queue Event filter Overlay \ Duration filter = = Search...

proc
DownsampleCs
6 H-an pz p4 36 pa 40 44 |46 |43 50 Fsz | | | &2 | 66 |68 70 | | | | 82 |B4 86 | | | ag | 102 | | | | |120 |122 | | | |
= =% =11 he b= Bo 14 2 e = lag B4 kb2 bc b2 kb -4 l.ia FE == kg B4 l-‘a Fi F; FD Fi Fa he b7 o b o2 e b7 o Had H o Hoe | | Ha4l hicl 10 Ho4 | | o= | | | | o]
r r r | | | | | rr = r [I I I r r I I I r-r r-rr r r r | | r | r | r | | r | | | |

PS: This is bad practice, FidelityFX SPD (https://gpuopen.com/fidelityfx-spd/) Shows how to do it better.

_|

-
B
B

AMDZ

GPUOpen TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

https://gpuopen.com/rgp/
https://gpuopen.com/fidelityfx-spd/

BARRIERS

Handle visibility operations
l.e., possibly insert cache flushes to make contents of LO caches visible to other compute units

Dual

Cache Hierarchy Radeon™ RX 5700 XT (simplified)

LOS | 1$andKS$ | LOS

L2S

BARRIERS

There is more parallelism: the Graphics Pipeline is well... a pipeline

The different stages for a Draw/Dispatch run (partly) in serial,
but new work can already start while old work items are still being executed

More on GPUOpen: https://gpuopen.com/learn/vulkan-barriers-explained/

Top
Draw Indirect
Vertex Input
Vertex Shader Vertex Shader

Fragment Shader Fragment Shader

Compute Shader Compute Shader

Bottom Bottom Bottom

AMDZ1
23RD
GPUOpen TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

https://gpuopen.com/learn/vulkan-barriers-explained/

FURTHER READS

Lots of relevant information
on GPUOpen
https://gpuopen.com

Including practical tools like
the Radeon GPU Profiler
https://gpuopen.com/rgp/

SONA TIEL
https://gpuopen.com/documentation/

AMD Y

Keeping }Zour GPU fed without getting bitten

https://www.khronos.org/assets/uploads/developers/library/2017-khronos-uk-vulkanised/004-Synchronization-Keeping%20Your%20Device%20Fed Mayl17.pdf

Breaking down Barriers _ _ _
https://therealmjp.qgithub.io/posts/breaking-down-barriers-part-1-whats-a-barrier/

A trip through the graphics pipeline
https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/

GPU View _ _
https://graphics.stanford.edu/~mdfisher/GPUView.html

- (5
z GPUODEH TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

https://gpuopen.com/rgp/
https://gpuopen.com/rgp/
https://gpuopen.com/documentation/
https://www.khronos.org/assets/uploads/developers/library/2017-khronos-uk-vulkanised/004-Synchronization-Keeping%20Your%20Device%20Fed_May17.pdf
https://therealmjp.github.io/posts/breaking-down-barriers-part-1-whats-a-barrier/
https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
https://graphics.stanford.edu/~mdfisher/GPUView.html

DISCLAIMER

DISCLAIMERS

The information contained herein is for qurmatlonalgaurposes only and is subject to change without notice. While every precaution has been
taken in the preparation of this document, it may contain technical’ inaccuracies, omissions and typographical errors, and AMD is under no
obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect
to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of
noninfringement, merchantabllltP/ or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other
g?_roducts described herein. No license, including implied or arising by estoppel, to any intellectual property rights is gtranted by this document.

erms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between thé parties or in
AMD's Standard Terms and Conditions of Sale. GD-18

Use of third-party marks / products is for informational purposes only and no endorsement of or by AMD is intended or implied. GD-83

AMD Radeon FreeSync requires a monitor and AMD Radeon™ gra%hics, both with FreeSync support. Seewww.amd.com/freesync for
complete details. Confirm capability with your system manufacturer before purchase. GD-127

© 2020 Advanced Micro Devices, Inc. All raghts reserved. AMD, the AMD Arrow logo, Radeon and combinations thereof are trademarks of
Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Windows and DirectX are registered trademarks of Microsoft
Corporation in the US and other jurisdictions. Vulkan and the Vulkan logo are trademarks of Khronos Group Inc. Other names are for
informational purposes only and may be trademarks of their respective owners.

AMDZ

GPUOpen TU MUNICH | CONCURRENCY MODEL IN EXPLICIT GRAPHICS APIS | JUNE 23RP, 2020

