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THE GAME

First Vulkan game using the engine

Engine had existing DX11 and DX12 support on top of an internal 
rendering API

Once the Vulkan version was somewhat stable, we started to look at 
the performance side of things J
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THE GAME

Å Best practices

-> hopefully minor changes only

Å Other optimization opportunities?

-> require probably a bit more work

-> start early enough, can introduce new problems



|   VULKANISED |   20195

BEST PRACTICES

Å Is compression enabled for the G-buffer render targets?

Å How do the barriers look?

Å Can we make use of the copy queue?

Å What about the shader building infrastructure?

Å é usage flags, use of correct layouts, etc.
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BEST PRACTICES

Å Is compression enabled for the G-buffer render targets?

Å How do the barriers look?

Å Can we make use of the copy queue?

Å What about the shader building infrastructure?

Å é usage flags, use of correct layouts, etc.

This is a checklist you can follow

through and verify for your own engine
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OTHER OPTIMIZATION 
OPPORTUNITIES

Å Very engine specific

Å In this particular case, there was a great async compute opportunity
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OTHER OPTIMIZATION 
OPPORTUNITIES

Å Very engine specific

Å In this particular case, there was a great async compute opportunity

Vulkan specific feature
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AGENDA

Å DCC ïDelta Color Compression

Å Barriers and other 
synchronization hassles

Å Other small things

Å Q&A
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AGENDA

OR THE PREVIOUSLY 
MENTIONED CHECKLIST

Å DCC ïDelta Color Compression

Å Barriers and other 
synchronization hassles

Å Other small things

Å Q&A

+ async compute opportunity
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DCC ïDELTA COLOR 
COMPRESSION

Å What is DCC?

Å Why do we want it

-> Performance impact

Å How to enable DCC?

-> the journey of enabling DCC for this game 
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WHAT IS DCC?

Å DCC ïDelta Color Compression

Å Takes advantage of the fact that render targets tend to store slowly varying data

Å E.g. a blue sky will have little variance between the pixels
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WHAT IS DCC?

Å DCC ïDelta Color Compression

Å Takes advantage of the fact that render targets tend to store slowly varying data

Å E.g. a blue sky will have little variance between the pixels

Å Stores whole blocks ïone value is stored with full precision, rest is stored as delta

Å Itós lossless
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WHY DO WE WANT DCC?

Å Itós a bandwidth saver

Å Take a special emphasis in enabling DCC for the G-buffer render targets

Å they usually benefit a lot from bandwidth savings
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Å Itós a bandwidth saver

Å Take a special emphasis in enabling DCC for the G-buffer render targets

Å they usually benefit a lot from bandwidth savings

Å How much?

Å Depends on workload and varies between graphics card

Å But in this particular game title, we observed speed-ups on all tested AMD GPUs, ranging 
between 
~5 ï10%
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WHY DO WE WANT DCC?

Å Itós a bandwidth saver

Å Take a special emphasis in enabling DCC for the G-buffer render targets

Å they usually benefit a lot from bandwidth savings

Å How much?

Å Depends on workload and varies between graphics card

Å But in this particular game title, we observed speed-ups on all tested AMD GPUs, ranging 
between 
~5 ï10%

Letós turn it ON
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HOW DO I KNOW DCC IS ENABLED?

Use Radeon GPU Profiler (RGP):



|   VULKANISED |   201922

HOW DO I KNOW DCC IS ENABLED?

Use Radeon GPU Profiler (RGP):



|   VULKANISED |   201923

HOW DO I KNOW DCC IS ENABLED?

Use Radeon GPU Profiler (RGP):



|   VULKANISED |   201924

HOW DO I KNOW DCC IS ENABLED?

Use Radeon GPU Profiler (RGP):
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DCC IS TURNED OFF ïWHY?

Å You can check the format

Å Float format

Å Integer format



|   VULKANISED |   201926

DCC IS TURNED OFF ïWHY?

Å You can check the format

Å Float format

Å Integer format

Å All of the below are supported
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Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF ïWHY?
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Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF ïWHY?

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

disables DCC
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

DCC only works for float XOR integer formats

-> R16G16B16A16_SFLOAT, DCC is supported

-> R16G16B16A16_UNORM, DCC is supported

Etc.
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DCC only works for float XOR integer formats

-> R16G16B16A16_SFLOAT, DCC is supported

-> R16G16B16A16_UNORM, DCC is supported

Etc.

How does the driver know the format of the image?

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

DCC only works for float XOR integer formats

-> R16G16B16A16_SFLOAT, DCC is supported

-> R16G16B16A16_UNORM, DCC is supported

Etc.

How does the driver know the format of the image?

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

What happens when the mutable bit is set?
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

imageCreateInfo.flags = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;

Spec:

ñVK_IMAGE_CREATE_MUTABLE_FORMAT_BIT specifies that the image can be used to create a 

VkImageView with a different format from the image.ò
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

imageCreateInfo.flags = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;

Spec:

-> The driver canót rely on the format information from the VkImageCreateInfo struct anymore

ñVK_IMAGE_CREATE_MUTABLE_FORMAT_BIT specifies that the image can be used to create a 

VkImageView with a different format from the image.ò
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

-> The driver canót rely on the format information from the VkImageCreateInfo struct anymore

For float XOR integer, the driver needs to distinguish between:

1. Image views with integer AND float formats are used on the image -> DCC must be disabled

2. Unsupported format is used -> DCC must be disabled

3. Only integer formats are used, e.g. UNORM and SRGB -> DCC can be enabled

4. Only float formats are used -> DCC can be enabled

The driver canôt know if enabling DCC is safe by simply looking at the mutable bit.
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

-> The driver canót rely on the format information from the VkImageCreateInfo struct anymore

For float XOR integer, the driver needs to distinguish between:

1. Image views with integer AND float formats are used on the image -> DCC must be disabled

2. Unsupported format is used -> DCC must be disabled

3. Only integer formats are used, e.g. UNORM and SRGB -> DCC can be enabled

4. Only float formats are used -> DCC can be enabled

The driver canôt know if enabling DCC is safe by simply looking at the mutable bit.
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

The driver canôt know if enabling DCC is safe by simply looking at the mutable bit.

-> provide additional information by using

VK_KHR_image_format_list

typedef struct VkImageFormatListCreateInfoKHR {

VkStructureType    sType;

const void*        pNext;

uint32_t           viewFormatCount;

const VkFormat*    pViewFormats;

} VkImageFormatListCreateInfoKHR;
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

VkImageFormatListCreateInfoKHR imageFormatList = {};

imageFormatList.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR

imageFormatList.pNext = é ;

imageFormatList.viewFormatCount = formatCount;

imageFormatList.pViewFormats = formats; // array of VkFormat

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

imageCreateInfo.flags = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;

imageCreateInfo.pNext = &imageFormatList ;

é
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT
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DOUBLE-CHECK IF THE CHANGE HAD THE
INTENDED EFFECT é

Use Radeon GPU Profiler (RGP):
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INTENDED EFFECT é

Use Radeon GPU Profiler (RGP):
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LETóS EXAMINE CREATE IMAGE INFO AGAIN
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LETóS EXAMINE CREATE IMAGE INFO AGAIN

Async compute support was added to the engine!

As a side-effect, now all resources have by

default sharing mode concurrent
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LETóS EXAMINE CREATE IMAGE INFO AGAIN

Async compute support was added to the engine!

As a side-effect, now all resources have by

default sharing mode concurrent
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VK_SHARING_MODE_CONCURRENT

Spec:

ñVK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image 

subresource of the object from multiple queue families is supported.ò
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VK_SHARING_MODE_CONCURRENT

Spec:

With VK_SHARING_MODE_CONCURRENT DCC is disabled

ñVK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image 

subresource of the object from multiple queue families is supported.ò
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VK_SHARING_MODE_CONCURRENT

Spec:

With VK_SHARING_MODE_CONCURRENT DCC is disabled

ñVK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image 

subresource of the object from multiple queue families is supported.ò

OOPS é
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VK_SHARING_MODE_CONCURRENT

Quick side note on async compute J

-->

Improved performance of up to ~10%
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VK_SHARING_MODE_CONCURRENT

Quick side note on async compute J

-->

Improved performance of up to ~10%

What about DCC?
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VK_ SHARING_MODE_CONCURRENT

How to go back to VK_SHARING_MODE_EXCLUSIVE to get DCC enabled?

-> Obviously, if a resource is accessed only by one queue, just switch back to EXCLUSIVE

But what about resources, which are accessed by several queue families?

-> transfer queue family ownership
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TRANSFER QUEUE FAMILY OWNERSHIP

Done in 2 steps

1. Release the exclusive ownership from the source queue family

2. Acquire the exclusive ownership for the destination queue family
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TRANSFER QUEUE FAMILY OWNERSHIP

Done in 2 steps

1. Release the exclusive ownership from the source queue family

2. Acquire the exclusive ownership for the destination queue family

Example:

Queue family 0 holds currently the exclusive ownership of image A

Queue family 1 wants to acquire exclusive ownership of image A
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RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = é

imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA ;

imageMemoryBarrier.newLayout = newLayoutImageA ;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA ;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA ;

é

vkCmdPipelineBarrier(cmdBuf, é);

é

vkQueueSubmit(queueFamily0,é, submitInfo, é);
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Associated to a commandPool
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RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = é

imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA ;

imageMemoryBarrier.newLayout = newLayoutImageA ;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA ;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA ;

é

vkCmdPipelineBarrier( cmdBuf, é);

é

vkQueueSubmit(queueFamily0,é, submitInfo, é);

Associated to a commandPool Associated to queue family 0
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RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = é

imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA ;

imageMemoryBarrier.newLayout = newLayoutImageA ;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA ;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA ;

é

vkCmdPipelineBarrier(cmdBuf, é);

é

vkQueueSubmit( queueFamily0 ,é, submitInfo, é);Semaphore to sync across queues


