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THE GAME

First Vulkan game using the engine

Engine had existing DX11 and DX12 support on top of an internal 
rendering API

Once the Vulkan version was somewhat stable, we started to look at 
the performance side of things ☺
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THE GAME

• Best practices

-> hopefully minor changes only

• Other optimization opportunities?

-> require probably a bit more work

-> start early enough, can introduce new problems
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BEST PRACTICES

• Is compression enabled for the G-buffer render targets?

• How do the barriers look?

• Can we make use of the copy queue?

• What about the shader building infrastructure?

• … usage flags, use of correct layouts, etc.
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BEST PRACTICES

• Is compression enabled for the G-buffer render targets?

• How do the barriers look?

• Can we make use of the copy queue?

• What about the shader building infrastructure?

• … usage flags, use of correct layouts, etc.

This is a checklist you can follow

through and verify for your own engine
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OTHER OPTIMIZATION 
OPPORTUNITIES

• Very engine specific

• In this particular case, there was a great async compute opportunity
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OTHER OPTIMIZATION 
OPPORTUNITIES

• Very engine specific

• In this particular case, there was a great async compute opportunity

Vulkan specific feature
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AGENDA

• DCC – Delta Color Compression

• Barriers 🤓 and other 
synchronization hassles

• Other small things

• Q&A
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AGENDA

OR THE PREVIOUSLY 
MENTIONED CHECKLIST

• DCC – Delta Color Compression

• Barriers 🤓 and other 
synchronization hassles

• Other small things

• Q&A

+ async compute opportunity
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DCC – DELTA COLOR 
COMPRESSION

• What is DCC?

• Why do we want it

-> Performance impact

• How to enable DCC?

-> the journey of enabling DCC for this game 🏞
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WHAT IS DCC?

• DCC – Delta Color Compression

• Takes advantage of the fact that render targets tend to store slowly varying data

• E.g. a blue sky will have little variance between the pixels
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WHAT IS DCC?

• DCC – Delta Color Compression

• Takes advantage of the fact that render targets tend to store slowly varying data

• E.g. a blue sky will have little variance between the pixels

• Stores whole blocks – one value is stored with full precision, rest is stored as delta

• It‘s lossless
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WHY DO WE WANT DCC?

• It‘s a bandwidth saver

• Take a special emphasis in enabling DCC for the G-buffer render targets

• they usually benefit a lot from bandwidth savings
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WHY DO WE WANT DCC?

• It‘s a bandwidth saver

• Take a special emphasis in enabling DCC for the G-buffer render targets

• they usually benefit a lot from bandwidth savings

• How much?

• Depends on workload and varies between graphics card

• But in this particular game title, we observed speed-ups on all tested AMD GPUs, ranging 
between 
~5 – 10%
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WHY DO WE WANT DCC?

• It‘s a bandwidth saver

• Take a special emphasis in enabling DCC for the G-buffer render targets

• they usually benefit a lot from bandwidth savings

• How much?

• Depends on workload and varies between graphics card

• But in this particular game title, we observed speed-ups on all tested AMD GPUs, ranging 
between 
~5 – 10%

Let‘s turn it ON
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HOW DO I KNOW DCC IS ENABLED?

Use Radeon GPU Profiler (RGP):
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HOW DO I KNOW DCC IS ENABLED?

Use Radeon GPU Profiler (RGP):
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DCC IS TURNED OFF – WHY?

• You can check the format

• Float format

• Integer format
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DCC IS TURNED OFF – WHY?

• You can check the format

• Float format

• Integer format

• All of the below are supported
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Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF – WHY?
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Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF – WHY?

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

disables DCC
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

DCC only works for float XOR integer formats

-> R16G16B16A16_SFLOAT, DCC is supported

-> R16G16B16A16_UNORM, DCC is supported

Etc.
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DCC only works for float XOR integer formats

-> R16G16B16A16_SFLOAT, DCC is supported

-> R16G16B16A16_UNORM, DCC is supported

Etc.

How does the driver know the format of the image?

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

DCC only works for float XOR integer formats

-> R16G16B16A16_SFLOAT, DCC is supported

-> R16G16B16A16_UNORM, DCC is supported

Etc.

How does the driver know the format of the image?

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

What happens when the mutable bit is set?
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

imageCreateInfo.flags = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;

Spec:

“VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT specifies that the image can be used to create a 

VkImageView with a different format from the image.”
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

imageCreateInfo.flags = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;

Spec:

-> The driver can‘t rely on the format information from the VkImageCreateInfo struct anymore

“VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT specifies that the image can be used to create a 

VkImageView with a different format from the image.”
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

-> The driver can‘t rely on the format information from the VkImageCreateInfo struct anymore

For float XOR integer, the driver needs to distinguish between:

1. Image views with integer AND float formats are used on the image -> DCC must be disabled

2. Unsupported format is used -> DCC must be disabled

3. Only integer formats are used, e.g. UNORM and SRGB -> DCC can be enabled

4. Only float formats are used -> DCC can be enabled

The driver can’t know if enabling DCC is safe by simply looking at the mutable bit.
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

-> The driver can‘t rely on the format information from the VkImageCreateInfo struct anymore

For float XOR integer, the driver needs to distinguish between:

1. Image views with integer AND float formats are used on the image -> DCC must be disabled

2. Unsupported format is used -> DCC must be disabled

3. Only integer formats are used, e.g. UNORM and SRGB -> DCC can be enabled

4. Only float formats are used -> DCC can be enabled

The driver can’t know if enabling DCC is safe by simply looking at the mutable bit.
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

The driver can’t know if enabling DCC is safe by simply looking at the mutable bit.

-> provide additional information by using

VK_KHR_image_format_list

typedef struct VkImageFormatListCreateInfoKHR {

VkStructureType    sType;

const void*        pNext;

uint32_t           viewFormatCount;

const VkFormat*    pViewFormats;

} VkImageFormatListCreateInfoKHR;
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

VkImageFormatListCreateInfoKHR imageFormatList = {};

imageFormatList.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR

imageFormatList.pNext = … ;

imageFormatList.viewFormatCount = formatCount;

imageFormatList.pViewFormats = formats; // array of VkFormat

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

imageCreateInfo.flags = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;

imageCreateInfo.pNext = &imageFormatList;

…
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VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT
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DOUBLE-CHECK IF THE CHANGE HAD THE
INTENDED EFFECT …

Use Radeon GPU Profiler (RGP):
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DOUBLE-CHECK IF THE CHANGE HAD THE
INTENDED EFFECT …

Use Radeon GPU Profiler (RGP):

It did not … 
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LET‘S EXAMINE CREATE IMAGE INFO AGAIN
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LET‘S EXAMINE CREATE IMAGE INFO AGAIN

Async compute support was added to the engine!

As a side-effect, now all resources have by

default sharing mode concurrent
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LET‘S EXAMINE CREATE IMAGE INFO AGAIN

Async compute support was added to the engine!

As a side-effect, now all resources have by

default sharing mode concurrent
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VK_SHARING_MODE_CONCURRENT

Spec:

“VK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image 

subresource of the object from multiple queue families is supported.”
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VK_SHARING_MODE_CONCURRENT

Spec:

With VK_SHARING_MODE_CONCURRENT DCC is disabled

“VK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image 

subresource of the object from multiple queue families is supported.”
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VK_SHARING_MODE_CONCURRENT

Spec:

With VK_SHARING_MODE_CONCURRENT DCC is disabled

“VK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image 

subresource of the object from multiple queue families is supported.”

OOPS …
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VK_SHARING_MODE_CONCURRENT

Quick side note on async compute ☺

-->

Improved performance of up to ~10%
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VK_SHARING_MODE_CONCURRENT

Quick side note on async compute ☺

-->

Improved performance of up to ~10%

What about DCC?
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VK_ SHARING_MODE_CONCURRENT

How to go back to VK_SHARING_MODE_EXCLUSIVE to get DCC enabled?

-> Obviously, if a resource is accessed only by one queue, just switch back to EXCLUSIVE

But what about resources, which are accessed by several queue families?

-> transfer queue family ownership
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TRANSFER QUEUE FAMILY OWNERSHIP

Done in 2 steps

1. Release the exclusive ownership from the source queue family

2. Acquire the exclusive ownership for the destination queue family
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TRANSFER QUEUE FAMILY OWNERSHIP

Done in 2 steps

1. Release the exclusive ownership from the source queue family

2. Acquire the exclusive ownership for the destination queue family

Example:

Queue family 0 holds currently the exclusive ownership of image A

Queue family 1 wants to acquire exclusive ownership of image A
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RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = …

imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA;

imageMemoryBarrier.newLayout = newLayoutImageA;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA;

…

vkCmdPipelineBarrier(cmdBuf, …);

…

vkQueueSubmit(queueFamily0,…, submitInfo, …);
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RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = …

imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA;

imageMemoryBarrier.newLayout = newLayoutImageA;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA;

…

vkCmdPipelineBarrier(cmdBuf, …);

…

vkQueueSubmit(queueFamily0,…, submitInfo, …);

Associated to a commandPool
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RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = …

imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA;

imageMemoryBarrier.newLayout = newLayoutImageA;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA;

…

vkCmdPipelineBarrier(cmdBuf, …);

…

vkQueueSubmit(queueFamily0,…, submitInfo, …);

Associated to a commandPool Associated to queue family 0
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RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = …

imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA;

imageMemoryBarrier.newLayout = newLayoutImageA;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA;

…

vkCmdPipelineBarrier(cmdBuf, …);

…

vkQueueSubmit(queueFamily0,…, submitInfo, …); Semaphore to sync across queues
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ACQUIRE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = 0;

imageMemoryBarrier.dstAccessMask = …

imageMemoryBarrier.oldLayout = oldLayoutImageA;

imageMemoryBarrier.newLayout = newLayoutImageA;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA;

…

vkCmdPipelineBarrier(cmdBuf, …);

…

vkQueueSubmit(queueFamily1,…, submitInfo, …);

Associated to a commandPool Associated to queue family 1
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LET‘S CHECK AGAIN ☺

Use Radeon GPU Profiler (RGP):
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LET‘S CHECK AGAIN ☺

Use Radeon GPU Profiler (RGP):

The performance increased about

~5-10%, depending on AMD graphics 

card
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LET‘S CHECK AGAIN ☺

Use Radeon GPU Profiler (RGP):

What about this one?

The performance increased about

~5-10%, depending on AMD graphics 

card
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AND ONCE AGAIN … ☺

Color RT #2 – G-buffer resource #2
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AND ONCE AGAIN … ☺

Color RT #2 – G-buffer resource #2
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USAGE FLAGS

Post process moved to the compute queue

due to async compute

-> VK_IMAGE_USAGE_STORAGE_BIT

is now required for G-buffer resource #2

Color RT #2 – G-buffer resource #2



|   VULKANISED |   201975

USAGE FLAGS

Post process moved to the compute queue

due to async compute

-> VK_IMAGE_USAGE_STORAGE_BIT

is now required for G-buffer resource #2

Color RT #2 – G-buffer resource #2
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VK_IMAGE_USAGE_STORAGE_BIT

Spec:

Spec:

„VK_IMAGE_USAGE_STORAGE_BIT specifies that the image can be used to create a VkImageView

suitable for occupying a VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE “

„ A storage image (VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) is a descriptor type associated 

with an image resource via an image view that load, store, and atomic operations can be performed 

on.“
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VK_IMAGE_USAGE_STORAGE_BIT

Spec:

Spec:

-->

„VK_IMAGE_USAGE_STORAGE_BIT specifies that the image can be used to create a VkImageView

suitable for occupying a VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE “

„ A storage image (VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) is a descriptor type associated 

with an image resource via an image view that load, store, and atomic operations can be performed 

on.“

Fragment shader

Color attachment:

G-buffer resource #2
Compute shader

Storage image:

G-buffer resource #2
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USAGE FLAGS

Usage flags influencing DCC:

• VK_IMAGE_USAGE_STORAGE_BIT – disables DCC

• VK_IMAGE_USAGE_SAMPLED_BIT – makes DCC less efficient
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USAGE FLAGS

Usage flags influencing DCC:

• VK_IMAGE_USAGE_STORAGE_BIT – disables DCC

• VK_IMAGE_USAGE_SAMPLED_BIT – makes DCC less efficient

Always use what you need, but not more 
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SUMMARY

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

• use VK_KHR_image_format_list

VK_SHARING_MODE_EXCLUSIVE 

• don‘t use sharing mode concurrent in production ready code

• use SHARING_MODE_EXCLUSIVE and transfer queue family ownership when required

USAGE FLAGS

• set all the usage flags you need, but not more
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OTHER NIT-PICKS CONCERNING DCC

Decompression

• During transfer operations

• General layout

Depth targets

• Compressed differently

• Above guidelines don‘t apply here

There is no rule without expection 

• There might be some tweaks in the driver for specific cards
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OTHER NIT-PICKS CONCERNING DCC

Decompression

• During transfer operations

• General layout

Depth targets

• Compressed differently

• Above guidelines don‘t apply here

There is no rule without expection 

• There might be some tweaks in the driver for specific cards
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SYNCHRONIZATION

Barriers

• Placing

• Batching

• Pipeline stage masks

Cross queue synchronization

I‘m totally innocent 
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BARRIERS

• Experience with barriers in this particular game

• Most of the issues likely have their roots in the original engine structure, which is DX11-based
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-> Rearranging barriers to get more overlap between the drawcalls / passes

-> Batching barriers to save some additional time
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BARRIERS

• Experience with barriers in this particular game

• Most of the issues likely have their roots in the original engine structure, which is DX11 based

-> Rearranging barriers to get more overlap between the drawcalls / passes

-> Batching barriers to save some additional time

• Other findings

-> Where specifying barriers as precise as possible really pays of
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BARRIERS – ORIGINAL SETUP

• The rendering work is logically organized in components – e.g. one shadow map component, 
one lighting component etc.

A

B

C
D
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BARRIERS – ORIGINAL SETUP

• The rendering work is logically organized in components – e.g. one shadow map component, 
one lighting component etc.

A

B

C
D

Constants A

Constants B

Constants C
Constants D



|   VULKANISED |   201989

BARRIERS – ORIGINAL SETUP

• Constants information is gathered on the CPU side in the beginning of each frame

• Constants A, B and C are equal, constants D are different

• Component A is independent from Component B

• Component C depends on Component A and B

• Component D depends on Component C

A

B

C
D

Constants A

Constants B

Constants C
Constants D



|   VULKANISED |   201990

BARRIERS – ORIGINAL SETUP

• Constants information is gathered on the CPU side in the beginning of each frame

• Constants A, B and C are equal, constants D are different

• Component A is independent from Component B

• Component C depends on Component A and B

• Component D depends on Component C

A

B

C
D

Constants A

Constants B

Constants C
Constants D
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BARRIERS – ORIGINAL SETUP

A B

C

Barrier Update constants A Barrier Barrier Update constants B Barrier

Barrier Update constants C Barrier

• Constants information is gathered on the CPU side in the beginning of each frame

• Constants A, B and C are equal, constants D are different

• Component A is independent from Component B

• Component C depends on Component A and B

• Component D depends on Component C

DBarrier Update constants D BarrierBarrier

Barrier
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BARRIERS – OPTIMIZED

• Constants information is gathered on the CPU side in the beginning of each frame

• Constants A, B and C are equal, constants D are different

• Component A is independent from Component B

• Component C depends on Component A and B

• Component D depends on Component C

Barrier Update constants A Barrier Barrier Update constants B Barrier

Barrier Update constants C Barrier

A B C

Barrier Update constants D Barrier

DBarrier Barrier
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BARRIERS – OPTIMIZED

• Constants information is gathered on the CPU side in the beginning of each frame

• Constants A, B and C are equal, constants D are different

• Component A is independent from Component B

• Component C depends on Component A and B

• Component D depends on Component C

Barrier Update constants A Barrier Barrier Update constants B Barrier

Barrier Update constants C Barrier

A

B
C

Barrier Update constants D Barrier

DBarrier Barrier
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BARRIERS – OPTIMIZED

• Constants information is gathered on the CPU side in the beginning of each frame

• Constants A, B and C are equal, constants D are different

• Component A is independent from Component B

• Component C depends on Component A and B

• Component D depends on Component C

Barrier Update constants A Barrier

Barrier Update constants B Barrier

Barrier Update constants C Barrier

A

B

C

Barrier Update constants D Barrier D

Barrier

Barrier



|   VULKANISED |   201995

BARRIERS – OPTIMIZED

• Constants information is gathered on the CPU side in the beginning of each frame

• Constants A, B and C are equal, constants D are different

• Component A is independent from Component B

• Component C depends on Component A and B

• Component D depends on Component C

Barrier Update constants Z Barrier
A

B

Barrier Update constants D Barrier

C

D

Barrier

Barrier
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BARRIERS – OPTIMIZED

• This is what we ended up with – but it already had observable changes

Barrier Update constants A Barrier Barrier Update constants B Barrier

Barrier Update constants C Barrier

A

B
C

Barrier Update constants D Barrier

DBarrier Barrier
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BARRIERS – OPTIMIZED

~15%

-->
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BARRIERS – OPTIMIZED

~15%

-->
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BARRIER BATCHING

Early builds had several consecutive barriers:
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BARRIER BATCHING

Early builds had several consecutive barriers:

void vkCmdPipelineBarrier(

VkCommandBuffer commandBuffer,

VkPipelineStageFlags srcStageMask,

VkPipelineStageFlags dstStageMask,

VkDependencyFlags dependencyFlags,

uint32_t                      memoryBarrierCount,

const VkMemoryBarrier*        pMemoryBarriers,

uint32_t                      bufferMemoryBarrierCount,

const VkBufferMemoryBarrier*  pBufferMemoryBarriers,

uint32_t                      imageMemoryBarrierCount,

const VkImageMemoryBarrier*   pImageMemoryBarriers);
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BARRIER BATCHING

Early builds had several consecutive barriers:

Example: 2 image layout transitions

vkCmdPipelineBarrier(…, 0, NULL, 0, NULL, 1, &imageBarrierA);

vkCmdPipelineBarrier(…, 0, NULL, 0, NULL, 1, &imageBarrierB);

void vkCmdPipelineBarrier(

VkCommandBuffer commandBuffer,

VkPipelineStageFlags srcStageMask,

VkPipelineStageFlags dstStageMask,

VkDependencyFlags dependencyFlags,

uint32_t                      memoryBarrierCount,

const VkMemoryBarrier*        pMemoryBarriers,

uint32_t                      bufferMemoryBarrierCount,

const VkBufferMemoryBarrier*  pBufferMemoryBarriers,

uint32_t                      imageMemoryBarrierCount,

const VkImageMemoryBarrier*   pImageMemoryBarriers);
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BARRIER BATCHING

Early builds had several consecutive barriers:

Example: 2 image layout transitions

vkCmdPipelineBarrier(…, 0, NULL, 0, NULL, 1, &imageBarrierA);

vkCmdPipelineBarrier(…, 0, NULL, 0, NULL, 1, &imageBarrierB);

->

VkImageMemoryBarrier[2] imageBarriers = {imageBarrierA, imageBarrierB};

vkCmdPipelineBarrier(…, 0, NULL, 0, NULL, 2, &imageBarriers);

void vkCmdPipelineBarrier(

VkCommandBuffer commandBuffer,

VkPipelineStageFlags srcStageMask,

VkPipelineStageFlags dstStageMask,

VkDependencyFlags dependencyFlags,

uint32_t                      memoryBarrierCount,

const VkMemoryBarrier*        pMemoryBarriers,

uint32_t                      bufferMemoryBarrierCount,

const VkBufferMemoryBarrier*  pBufferMemoryBarriers,

uint32_t                      imageMemoryBarrierCount,

const VkImageMemoryBarrier*   pImageMemoryBarriers);
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PIPELINE STAGE MASKS

Top

Draw Indirect

Vertex Input

Vertex Shader

…

Fragment Shader

…

Transfer

Compute Shader

Bottom

Top

Draw Indirect

Vertex Input

Vertex Shader

…

Fragment Shader

…

Transfer

Compute Shader

Bottom
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PIPELINE STAGE MASKS

Top

Draw Indirect

Vertex Input

Vertex Shader

…

Fragment Shader

…

Transfer

Compute Shader

Bottom

Top

Draw Indirect

Vertex Input

Vertex Shader

…

Fragment Shader

…

Transfer

Compute Shader

Bottom

ALL_COMMANDS_BIT

“VK_PIPELINE_STAGE_ALL_COMMANDS_BIT is 

equivalent to the logical OR of every other pipeline 

stage flag that is supported on the queue it is used 

with.”

Spec:
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ALL_COMMANDS_BIT – COMPUTE PIPELINE

Top

Draw Indirect

Vertex Input

Vertex Shader

…

Fragment Shader

…

Transfer

Compute Shader

Bottom

ALL_COMMANDS_BIT

“VK_PIPELINE_STAGE_ALL_COMMANDS_BIT is 

equivalent to the logical OR of every other pipeline 

stage flag that is supported on the queue it is used 

with.”

Spec:
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ALL_COMMANDS_BIT – COMPUTE PIPELINE

Top

Draw Indirect

Vertex Input

Vertex Shader

…

Fragment Shader

…

Transfer

Compute Shader

Bottom

ALL_COMMANDS_BIT

The bottom bit adds a wait on end of pipe + timestamp

-> can take up to ~64k cycles on the async queue 

“VK_PIPELINE_STAGE_ALL_COMMANDS_BIT is 

equivalent to the logical OR of every other pipeline 

stage flag that is supported on the queue it is used 

with.”

Spec:
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ALL_COMMANDS_BIT – COMPUTE PIPELINE

Top

Draw Indirect

Vertex Input

Vertex Shader

…

Fragment Shader

…

Transfer

Compute Shader

Bottom

ALL_COMMANDS_BIT

The bottom bit adds a wait on end of pipe + timestamp

-> can take up to ~64k cycles on the async queue 

Use the specific pipeline stage mask instead of all_commands, e.g.:

VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT  | 

VK_PIPELINE_STAGE_TRANSFER_BIT 

“VK_PIPELINE_STAGE_ALL_COMMANDS_BIT is 

equivalent to the logical OR of every other pipeline 

stage flag that is supported on the queue it is used 

with.”

Spec:

->
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ALL_COMMANDS_BIT – COMPUTE PIPELINE

VK_PIPELINE_STAGE_ALL_COMMANDS_BIT

on async compute queue
->
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ALL_COMMANDS_BIT – COMPUTE PIPELINE

VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT  | 

VK_PIPELINE_STAGE_TRANSFER_BIT 

on async compute queue

->
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CROSS QUEUE SYNCHRONIZATION

The engine used to have ~7 command buffers per frame
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CROSS QUEUE SYNCHRONIZATION

The engine used to have ~7 command buffers per frame

After async compute support was added, the number of command buffers doubled



|   VULKANISED |   2019112

CROSS QUEUE SYNCHRONIZATION

Cross queue synchronization is only possible at submission boundaries
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SUMMARY

• Check your barriers if you can rearrange them

• Batch consecutive barriers to a single barrier

• Specify your barriers as precise as possible

• Cross queue synchronization is only possible at submission boundaries
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OTHER SMALL THINGS

• Copy queue

• Compute queue & the swapchain

• Shader building infrastructure
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COPY QUEUE

Resource was copied from GPU to CPU

• Generated on GPU during previous frame

• After the copy overwritten with updated data from current frame

This copy blocked the whole GPU.

-> ~1-2% of frame time
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COPY QUEUE

By using the copy queue, we won the time previously spend for vkCmdCopyImage() back.
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COMPUTE QUEUE & SWAPCHAIN

Write directly from compute to the swapchain
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COMPUTE QUEUE & SWAPCHAIN

Write directly from compute to the swapchain
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COMPUTE QUEUE & SWAPCHAIN

Write directly from compute to the swapchain

Possibly present from compute

Vulkan specific feature
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SHADER BUILDING INFRASTRUCTURE

HLSL
DXC

SPIR-V
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SUMMARY

• Check for compression, especially for the G-buffer render targets

• Take special care of the barriers ☺

• Can you make good use of the copy queue?

• The compute queue can write directly to the swapchain

• Use the DXC compiler
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Q&A

lou.kramer@amd.com

@lou_auroyup

https://gpuopen.com/

mailto:lou.kramer@amd.com
https://gpuopen.com/
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