
OPTIMISING A AAA VULKAN
TITLE ON DESKTOP
LOU KRAMER

| VULKANISED | 20192

LOU KRAMER

DEVELOPER TECHNOLOGY ENGINEER
AMD

| VULKANISED | 20193

THE GAME

First Vulkan game using the engine

Engine had existing DX11 and DX12 support on top of an internal
rendering API

Once the Vulkan version was somewhat stable, we started to look at
the performance side of things J

| VULKANISED | 20194

THE GAME

Å Best practices

-> hopefully minor changes only

Å Other optimization opportunities?

-> require probably a bit more work

-> start early enough, can introduce new problems

| VULKANISED | 20195

BEST PRACTICES

Å Is compression enabled for the G-buffer render targets?

Å How do the barriers look?

Å Can we make use of the copy queue?

Å What about the shader building infrastructure?

Å é usage flags, use of correct layouts, etc.

| VULKANISED | 20196

BEST PRACTICES

Å Is compression enabled for the G-buffer render targets?

Å How do the barriers look?

Å Can we make use of the copy queue?

Å What about the shader building infrastructure?

Å é usage flags, use of correct layouts, etc.

This is a checklist you can follow

through and verify for your own engine

| VULKANISED | 20197

OTHER OPTIMIZATION
OPPORTUNITIES

Å Very engine specific

Å In this particular case, there was a great async compute opportunity

| VULKANISED | 20198

OTHER OPTIMIZATION
OPPORTUNITIES

Å Very engine specific

Å In this particular case, there was a great async compute opportunity

| VULKANISED | 20199

OTHER OPTIMIZATION
OPPORTUNITIES

Å Very engine specific

Å In this particular case, there was a great async compute opportunity

| VULKANISED | 201910

OTHER OPTIMIZATION
OPPORTUNITIES

Å Very engine specific

Å In this particular case, there was a great async compute opportunity

Vulkan specific feature

| VULKANISED | 201911

AGENDA

Å DCC ïDelta Color Compression

Å Barriers and other
synchronization hassles

Å Other small things

Å Q&A

| VULKANISED | 201912

AGENDA

OR THE PREVIOUSLY
MENTIONED CHECKLIST

Å DCC ïDelta Color Compression

Å Barriers and other
synchronization hassles

Å Other small things

Å Q&A

| VULKANISED | 201913

AGENDA

OR THE PREVIOUSLY
MENTIONED CHECKLIST

Å DCC ïDelta Color Compression

Å Barriers and other
synchronization hassles

Å Other small things

Å Q&A

+ async compute opportunity

| VULKANISED | 201914

DCC ïDELTA COLOR
COMPRESSION

Å What is DCC?

Å Why do we want it

-> Performance impact

Å How to enable DCC?

-> the journey of enabling DCC for this game

| VULKANISED | 201915

WHAT IS DCC?

Å DCC ïDelta Color Compression

Å Takes advantage of the fact that render targets tend to store slowly varying data

Å E.g. a blue sky will have little variance between the pixels

| VULKANISED | 201916

WHAT IS DCC?

Å DCC ïDelta Color Compression

Å Takes advantage of the fact that render targets tend to store slowly varying data

Å E.g. a blue sky will have little variance between the pixels

| VULKANISED | 201917

WHAT IS DCC?

Å DCC ïDelta Color Compression

Å Takes advantage of the fact that render targets tend to store slowly varying data

Å E.g. a blue sky will have little variance between the pixels

Å Stores whole blocks ïone value is stored with full precision, rest is stored as delta

Å Itós lossless

| VULKANISED | 201918

WHY DO WE WANT DCC?

Å Itós a bandwidth saver

Å Take a special emphasis in enabling DCC for the G-buffer render targets

Å they usually benefit a lot from bandwidth savings

| VULKANISED | 201919

WHY DO WE WANT DCC?

Å Itós a bandwidth saver

Å Take a special emphasis in enabling DCC for the G-buffer render targets

Å they usually benefit a lot from bandwidth savings

Å How much?

Å Depends on workload and varies between graphics card

Å But in this particular game title, we observed speed-ups on all tested AMD GPUs, ranging
between
~5 ï10%

| VULKANISED | 201920

WHY DO WE WANT DCC?

Å Itós a bandwidth saver

Å Take a special emphasis in enabling DCC for the G-buffer render targets

Å they usually benefit a lot from bandwidth savings

Å How much?

Å Depends on workload and varies between graphics card

Å But in this particular game title, we observed speed-ups on all tested AMD GPUs, ranging
between
~5 ï10%

Letós turn it ON

| VULKANISED | 201921

HOW DO I KNOW DCC IS ENABLED?

Use Radeon GPU Profiler (RGP):

| VULKANISED | 201922

HOW DO I KNOW DCC IS ENABLED?

Use Radeon GPU Profiler (RGP):

| VULKANISED | 201923

HOW DO I KNOW DCC IS ENABLED?

Use Radeon GPU Profiler (RGP):

| VULKANISED | 201924

HOW DO I KNOW DCC IS ENABLED?

Use Radeon GPU Profiler (RGP):

| VULKANISED | 201925

DCC IS TURNED OFF ïWHY?

Å You can check the format

Å Float format

Å Integer format

| VULKANISED | 201926

DCC IS TURNED OFF ïWHY?

Å You can check the format

Å Float format

Å Integer format

Å All of the below are supported

| VULKANISED | 201927

Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF ïWHY?

| VULKANISED | 201928

Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF ïWHY?

| VULKANISED | 201929

Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF ïWHY?

| VULKANISED | 201930

Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF ïWHY?

| VULKANISED | 201931

Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF ïWHY?

| VULKANISED | 201932

Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF ïWHY?

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

disables DCC

| VULKANISED | 201933

Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF ïWHY?

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

disables DCC

| VULKANISED | 201934

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

DCC only works for float XOR integer formats

-> R16G16B16A16_SFLOAT, DCC is supported

-> R16G16B16A16_UNORM, DCC is supported

Etc.

| VULKANISED | 201935

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

DCC only works for float XOR integer formats

-> R16G16B16A16_SFLOAT, DCC is supported

-> R16G16B16A16_UNORM, DCC is supported

Etc.

How does the driver know the format of the image?

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

| VULKANISED | 201936

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

DCC only works for float XOR integer formats

-> R16G16B16A16_SFLOAT, DCC is supported

-> R16G16B16A16_UNORM, DCC is supported

Etc.

How does the driver know the format of the image?

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

What happens when the mutable bit is set?

| VULKANISED | 201937

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

imageCreateInfo.flags = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;

Spec:

ñVK_IMAGE_CREATE_MUTABLE_FORMAT_BIT specifies that the image can be used to create a

VkImageView with a different format from the image.ò

| VULKANISED | 201938

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

imageCreateInfo.flags = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;

Spec:

-> The driver canót rely on the format information from the VkImageCreateInfo struct anymore

ñVK_IMAGE_CREATE_MUTABLE_FORMAT_BIT specifies that the image can be used to create a

VkImageView with a different format from the image.ò

| VULKANISED | 201939

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

-> The driver canót rely on the format information from the VkImageCreateInfo struct anymore

For float XOR integer, the driver needs to distinguish between:

1. Image views with integer AND float formats are used on the image -> DCC must be disabled

2. Unsupported format is used -> DCC must be disabled

3. Only integer formats are used, e.g. UNORM and SRGB -> DCC can be enabled

4. Only float formats are used -> DCC can be enabled

The driver canôt know if enabling DCC is safe by simply looking at the mutable bit.

| VULKANISED | 201940

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

-> The driver canót rely on the format information from the VkImageCreateInfo struct anymore

For float XOR integer, the driver needs to distinguish between:

1. Image views with integer AND float formats are used on the image -> DCC must be disabled

2. Unsupported format is used -> DCC must be disabled

3. Only integer formats are used, e.g. UNORM and SRGB -> DCC can be enabled

4. Only float formats are used -> DCC can be enabled

The driver canôt know if enabling DCC is safe by simply looking at the mutable bit.

| VULKANISED | 201941

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

-> The driver canót rely on the format information from the VkImageCreateInfo struct anymore

For float XOR integer, the driver needs to distinguish between:

1. Image views with integer AND float formats are used on the image -> DCC must be disabled

2. Unsupported format is used -> DCC must be disabled

3. Only integer formats are used, e.g. UNORM and SRGB -> DCC can be enabled

4. Only float formats are used -> DCC can be enabled

The driver canôt know if enabling DCC is safe by simply looking at the mutable bit.

| VULKANISED | 201942

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

The driver canôt know if enabling DCC is safe by simply looking at the mutable bit.

-> provide additional information by using

VK_KHR_image_format_list

typedef struct VkImageFormatListCreateInfoKHR {

VkStructureType sType;

const void* pNext;

uint32_t viewFormatCount;

const VkFormat* pViewFormats;

} VkImageFormatListCreateInfoKHR;

| VULKANISED | 201943

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

VkImageFormatListCreateInfoKHR imageFormatList = {};

imageFormatList.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR

imageFormatList.pNext = é ;

imageFormatList.viewFormatCount = formatCount;

imageFormatList.pViewFormats = formats; // array of VkFormat

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

imageCreateInfo.flags = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;

imageCreateInfo.pNext = &imageFormatList ;

é

| VULKANISED | 201944

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

| VULKANISED | 201945

DOUBLE-CHECK IF THE CHANGE HAD THE
INTENDED EFFECT é

Use Radeon GPU Profiler (RGP):

| VULKANISED | 201946

DOUBLE-CHECK IF THE CHANGE HAD THE
INTENDED EFFECT é

Use Radeon GPU Profiler (RGP):

It did not é

| VULKANISED | 201947

DOUBLE-CHECK IF THE CHANGE HAD THE
INTENDED EFFECT é

Use Radeon GPU Profiler (RGP):

It did not é

| VULKANISED | 201948

LETóS EXAMINE CREATE IMAGE INFO AGAIN

| VULKANISED | 201949

LETóS EXAMINE CREATE IMAGE INFO AGAIN

| VULKANISED | 201950

LETóS EXAMINE CREATE IMAGE INFO AGAIN

| VULKANISED | 201951

LETóS EXAMINE CREATE IMAGE INFO AGAIN

| VULKANISED | 201952

LETóS EXAMINE CREATE IMAGE INFO AGAIN

| VULKANISED | 201953

LETóS EXAMINE CREATE IMAGE INFO AGAIN

Async compute support was added to the engine!

As a side-effect, now all resources have by

default sharing mode concurrent

| VULKANISED | 201954

LETóS EXAMINE CREATE IMAGE INFO AGAIN

Async compute support was added to the engine!

As a side-effect, now all resources have by

default sharing mode concurrent

| VULKANISED | 201955

VK_SHARING_MODE_CONCURRENT

Spec:

ñVK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image

subresource of the object from multiple queue families is supported.ò

| VULKANISED | 201956

VK_SHARING_MODE_CONCURRENT

Spec:

With VK_SHARING_MODE_CONCURRENT DCC is disabled

ñVK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image

subresource of the object from multiple queue families is supported.ò

| VULKANISED | 201957

VK_SHARING_MODE_CONCURRENT

Spec:

With VK_SHARING_MODE_CONCURRENT DCC is disabled

ñVK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image

subresource of the object from multiple queue families is supported.ò

OOPS é

| VULKANISED | 201958

VK_SHARING_MODE_CONCURRENT

Quick side note on async compute J

-->

Improved performance of up to ~10%

| VULKANISED | 201959

VK_SHARING_MODE_CONCURRENT

Quick side note on async compute J

-->

Improved performance of up to ~10%

What about DCC?

| VULKANISED | 201960

VK_ SHARING_MODE_CONCURRENT

How to go back to VK_SHARING_MODE_EXCLUSIVE to get DCC enabled?

-> Obviously, if a resource is accessed only by one queue, just switch back to EXCLUSIVE

But what about resources, which are accessed by several queue families?

-> transfer queue family ownership

| VULKANISED | 201961

TRANSFER QUEUE FAMILY OWNERSHIP

Done in 2 steps

1. Release the exclusive ownership from the source queue family

2. Acquire the exclusive ownership for the destination queue family

| VULKANISED | 201962

TRANSFER QUEUE FAMILY OWNERSHIP

Done in 2 steps

1. Release the exclusive ownership from the source queue family

2. Acquire the exclusive ownership for the destination queue family

Example:

Queue family 0 holds currently the exclusive ownership of image A

Queue family 1 wants to acquire exclusive ownership of image A

| VULKANISED | 201963

RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = é

imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA ;

imageMemoryBarrier.newLayout = newLayoutImageA ;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA ;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA ;

é

vkCmdPipelineBarrier(cmdBuf, é);

é

vkQueueSubmit(queueFamily0,é, submitInfo, é);

| VULKANISED | 201964

RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = é

imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA ;

imageMemoryBarrier.newLayout = newLayoutImageA ;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA ;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA ;

é

vkCmdPipelineBarrier(cmdBuf, é);

é

vkQueueSubmit(queueFamily0,é, submitInfo, é);

Associated to a commandPool

| VULKANISED | 201965

RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = é

imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA ;

imageMemoryBarrier.newLayout = newLayoutImageA ;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA ;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA ;

é

vkCmdPipelineBarrier(cmdBuf, é);

é

vkQueueSubmit(queueFamily0,é, submitInfo, é);

Associated to a commandPool Associated to queue family 0

| VULKANISED | 201966

RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = é

imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA ;

imageMemoryBarrier.newLayout = newLayoutImageA ;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA ;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA ;

é

vkCmdPipelineBarrier(cmdBuf, é);

é

vkQueueSubmit(queueFamily0 ,é, submitInfo, é);Semaphore to sync across queues

