
OPTIMISING A AAA VULKAN
TITLE ON DESKTOP
LOU KRAMER

| VULKANISED | 20192

LOU KRAMER

DEVELOPER TECHNOLOGY ENGINEER
AMD

| VULKANISED | 20193

THE GAME

First Vulkan game using the engine

Engine had existing DX11 and DX12 support on top of an internal
rendering API

Once the Vulkan version was somewhat stable, we started to look at
the performance side of things ☺

| VULKANISED | 20194

THE GAME

• Best practices

-> hopefully minor changes only

• Other optimization opportunities?

-> require probably a bit more work

-> start early enough, can introduce new problems

| VULKANISED | 20195

BEST PRACTICES

• Is compression enabled for the G-buffer render targets?

• How do the barriers look?

• Can we make use of the copy queue?

• What about the shader building infrastructure?

• … usage flags, use of correct layouts, etc.

| VULKANISED | 20196

BEST PRACTICES

• Is compression enabled for the G-buffer render targets?

• How do the barriers look?

• Can we make use of the copy queue?

• What about the shader building infrastructure?

• … usage flags, use of correct layouts, etc.

This is a checklist you can follow

through and verify for your own engine

| VULKANISED | 20197

OTHER OPTIMIZATION
OPPORTUNITIES

• Very engine specific

• In this particular case, there was a great async compute opportunity

| VULKANISED | 20198

OTHER OPTIMIZATION
OPPORTUNITIES

• Very engine specific

• In this particular case, there was a great async compute opportunity

| VULKANISED | 20199

OTHER OPTIMIZATION
OPPORTUNITIES

• Very engine specific

• In this particular case, there was a great async compute opportunity

| VULKANISED | 201910

OTHER OPTIMIZATION
OPPORTUNITIES

• Very engine specific

• In this particular case, there was a great async compute opportunity

Vulkan specific feature

| VULKANISED | 201911

AGENDA

• DCC – Delta Color Compression

• Barriers 🤓 and other
synchronization hassles

• Other small things

• Q&A

| VULKANISED | 201912

AGENDA

OR THE PREVIOUSLY
MENTIONED CHECKLIST

• DCC – Delta Color Compression

• Barriers 🤓 and other
synchronization hassles

• Other small things

• Q&A

| VULKANISED | 201913

AGENDA

OR THE PREVIOUSLY
MENTIONED CHECKLIST

• DCC – Delta Color Compression

• Barriers 🤓 and other
synchronization hassles

• Other small things

• Q&A

+ async compute opportunity

| VULKANISED | 201914

DCC – DELTA COLOR
COMPRESSION

• What is DCC?

• Why do we want it

-> Performance impact

• How to enable DCC?

-> the journey of enabling DCC for this game 🏞

| VULKANISED | 201915

WHAT IS DCC?

• DCC – Delta Color Compression

• Takes advantage of the fact that render targets tend to store slowly varying data

• E.g. a blue sky will have little variance between the pixels

| VULKANISED | 201916

WHAT IS DCC?

• DCC – Delta Color Compression

• Takes advantage of the fact that render targets tend to store slowly varying data

• E.g. a blue sky will have little variance between the pixels

| VULKANISED | 201917

WHAT IS DCC?

• DCC – Delta Color Compression

• Takes advantage of the fact that render targets tend to store slowly varying data

• E.g. a blue sky will have little variance between the pixels

• Stores whole blocks – one value is stored with full precision, rest is stored as delta

• It‘s lossless

| VULKANISED | 201918

WHY DO WE WANT DCC?

• It‘s a bandwidth saver

• Take a special emphasis in enabling DCC for the G-buffer render targets

• they usually benefit a lot from bandwidth savings

| VULKANISED | 201919

WHY DO WE WANT DCC?

• It‘s a bandwidth saver

• Take a special emphasis in enabling DCC for the G-buffer render targets

• they usually benefit a lot from bandwidth savings

• How much?

• Depends on workload and varies between graphics card

• But in this particular game title, we observed speed-ups on all tested AMD GPUs, ranging
between
~5 – 10%

| VULKANISED | 201920

WHY DO WE WANT DCC?

• It‘s a bandwidth saver

• Take a special emphasis in enabling DCC for the G-buffer render targets

• they usually benefit a lot from bandwidth savings

• How much?

• Depends on workload and varies between graphics card

• But in this particular game title, we observed speed-ups on all tested AMD GPUs, ranging
between
~5 – 10%

Let‘s turn it ON

| VULKANISED | 201921

HOW DO I KNOW DCC IS ENABLED?

Use Radeon GPU Profiler (RGP):

| VULKANISED | 201922

HOW DO I KNOW DCC IS ENABLED?

Use Radeon GPU Profiler (RGP):

| VULKANISED | 201923

HOW DO I KNOW DCC IS ENABLED?

Use Radeon GPU Profiler (RGP):

| VULKANISED | 201924

HOW DO I KNOW DCC IS ENABLED?

Use Radeon GPU Profiler (RGP):

| VULKANISED | 201925

DCC IS TURNED OFF – WHY?

• You can check the format

• Float format

• Integer format

| VULKANISED | 201926

DCC IS TURNED OFF – WHY?

• You can check the format

• Float format

• Integer format

• All of the below are supported

| VULKANISED | 201927

Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF – WHY?

| VULKANISED | 201928

Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF – WHY?

| VULKANISED | 201929

Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF – WHY?

| VULKANISED | 201930

Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF – WHY?

| VULKANISED | 201931

Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF – WHY?

| VULKANISED | 201932

Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF – WHY?

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

disables DCC

| VULKANISED | 201933

Retrieve some more resource details from RenderDoc:

DCC IS TURNED OFF – WHY?

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

disables DCC

| VULKANISED | 201934

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

DCC only works for float XOR integer formats

-> R16G16B16A16_SFLOAT, DCC is supported

-> R16G16B16A16_UNORM, DCC is supported

Etc.

| VULKANISED | 201935

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

DCC only works for float XOR integer formats

-> R16G16B16A16_SFLOAT, DCC is supported

-> R16G16B16A16_UNORM, DCC is supported

Etc.

How does the driver know the format of the image?

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

| VULKANISED | 201936

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

DCC only works for float XOR integer formats

-> R16G16B16A16_SFLOAT, DCC is supported

-> R16G16B16A16_UNORM, DCC is supported

Etc.

How does the driver know the format of the image?

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

What happens when the mutable bit is set?

| VULKANISED | 201937

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

imageCreateInfo.flags = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;

Spec:

“VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT specifies that the image can be used to create a

VkImageView with a different format from the image.”

| VULKANISED | 201938

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

imageCreateInfo.flags = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;

Spec:

-> The driver can‘t rely on the format information from the VkImageCreateInfo struct anymore

“VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT specifies that the image can be used to create a

VkImageView with a different format from the image.”

| VULKANISED | 201939

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

-> The driver can‘t rely on the format information from the VkImageCreateInfo struct anymore

For float XOR integer, the driver needs to distinguish between:

1. Image views with integer AND float formats are used on the image -> DCC must be disabled

2. Unsupported format is used -> DCC must be disabled

3. Only integer formats are used, e.g. UNORM and SRGB -> DCC can be enabled

4. Only float formats are used -> DCC can be enabled

The driver can’t know if enabling DCC is safe by simply looking at the mutable bit.

| VULKANISED | 201940

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

-> The driver can‘t rely on the format information from the VkImageCreateInfo struct anymore

For float XOR integer, the driver needs to distinguish between:

1. Image views with integer AND float formats are used on the image -> DCC must be disabled

2. Unsupported format is used -> DCC must be disabled

3. Only integer formats are used, e.g. UNORM and SRGB -> DCC can be enabled

4. Only float formats are used -> DCC can be enabled

The driver can’t know if enabling DCC is safe by simply looking at the mutable bit.

| VULKANISED | 201941

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

-> The driver can‘t rely on the format information from the VkImageCreateInfo struct anymore

For float XOR integer, the driver needs to distinguish between:

1. Image views with integer AND float formats are used on the image -> DCC must be disabled

2. Unsupported format is used -> DCC must be disabled

3. Only integer formats are used, e.g. UNORM and SRGB -> DCC can be enabled

4. Only float formats are used -> DCC can be enabled

The driver can’t know if enabling DCC is safe by simply looking at the mutable bit.

| VULKANISED | 201942

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

The driver can’t know if enabling DCC is safe by simply looking at the mutable bit.

-> provide additional information by using

VK_KHR_image_format_list

typedef struct VkImageFormatListCreateInfoKHR {

VkStructureType sType;

const void* pNext;

uint32_t viewFormatCount;

const VkFormat* pViewFormats;

} VkImageFormatListCreateInfoKHR;

| VULKANISED | 201943

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

VkImageFormatListCreateInfoKHR imageFormatList = {};

imageFormatList.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR

imageFormatList.pNext = … ;

imageFormatList.viewFormatCount = formatCount;

imageFormatList.pViewFormats = formats; // array of VkFormat

VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;

imageCreateInfo.flags = VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;

imageCreateInfo.pNext = &imageFormatList;

…

| VULKANISED | 201944

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

| VULKANISED | 201945

DOUBLE-CHECK IF THE CHANGE HAD THE
INTENDED EFFECT …

Use Radeon GPU Profiler (RGP):

| VULKANISED | 201946

DOUBLE-CHECK IF THE CHANGE HAD THE
INTENDED EFFECT …

Use Radeon GPU Profiler (RGP):

It did not …

| VULKANISED | 201947

DOUBLE-CHECK IF THE CHANGE HAD THE
INTENDED EFFECT …

Use Radeon GPU Profiler (RGP):

It did not …

| VULKANISED | 201948

LET‘S EXAMINE CREATE IMAGE INFO AGAIN

| VULKANISED | 201949

LET‘S EXAMINE CREATE IMAGE INFO AGAIN

| VULKANISED | 201950

LET‘S EXAMINE CREATE IMAGE INFO AGAIN

| VULKANISED | 201951

LET‘S EXAMINE CREATE IMAGE INFO AGAIN

| VULKANISED | 201952

LET‘S EXAMINE CREATE IMAGE INFO AGAIN

| VULKANISED | 201953

LET‘S EXAMINE CREATE IMAGE INFO AGAIN

Async compute support was added to the engine!

As a side-effect, now all resources have by

default sharing mode concurrent

| VULKANISED | 201954

LET‘S EXAMINE CREATE IMAGE INFO AGAIN

Async compute support was added to the engine!

As a side-effect, now all resources have by

default sharing mode concurrent

| VULKANISED | 201955

VK_SHARING_MODE_CONCURRENT

Spec:

“VK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image

subresource of the object from multiple queue families is supported.”

| VULKANISED | 201956

VK_SHARING_MODE_CONCURRENT

Spec:

With VK_SHARING_MODE_CONCURRENT DCC is disabled

“VK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image

subresource of the object from multiple queue families is supported.”

| VULKANISED | 201957

VK_SHARING_MODE_CONCURRENT

Spec:

With VK_SHARING_MODE_CONCURRENT DCC is disabled

“VK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image

subresource of the object from multiple queue families is supported.”

OOPS …

| VULKANISED | 201958

VK_SHARING_MODE_CONCURRENT

Quick side note on async compute ☺

-->

Improved performance of up to ~10%

| VULKANISED | 201959

VK_SHARING_MODE_CONCURRENT

Quick side note on async compute ☺

-->

Improved performance of up to ~10%

What about DCC?

| VULKANISED | 201960

VK_ SHARING_MODE_CONCURRENT

How to go back to VK_SHARING_MODE_EXCLUSIVE to get DCC enabled?

-> Obviously, if a resource is accessed only by one queue, just switch back to EXCLUSIVE

But what about resources, which are accessed by several queue families?

-> transfer queue family ownership

| VULKANISED | 201961

TRANSFER QUEUE FAMILY OWNERSHIP

Done in 2 steps

1. Release the exclusive ownership from the source queue family

2. Acquire the exclusive ownership for the destination queue family

| VULKANISED | 201962

TRANSFER QUEUE FAMILY OWNERSHIP

Done in 2 steps

1. Release the exclusive ownership from the source queue family

2. Acquire the exclusive ownership for the destination queue family

Example:

Queue family 0 holds currently the exclusive ownership of image A

Queue family 1 wants to acquire exclusive ownership of image A

| VULKANISED | 201963

RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = …

imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA;

imageMemoryBarrier.newLayout = newLayoutImageA;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA;

…

vkCmdPipelineBarrier(cmdBuf, …);

…

vkQueueSubmit(queueFamily0,…, submitInfo, …);

| VULKANISED | 201964

RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = …

imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA;

imageMemoryBarrier.newLayout = newLayoutImageA;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA;

…

vkCmdPipelineBarrier(cmdBuf, …);

…

vkQueueSubmit(queueFamily0,…, submitInfo, …);

Associated to a commandPool

| VULKANISED | 201965

RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = …

imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA;

imageMemoryBarrier.newLayout = newLayoutImageA;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA;

…

vkCmdPipelineBarrier(cmdBuf, …);

…

vkQueueSubmit(queueFamily0,…, submitInfo, …);

Associated to a commandPool Associated to queue family 0

| VULKANISED | 201966

RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = …

imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA;

imageMemoryBarrier.newLayout = newLayoutImageA;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA;

…

vkCmdPipelineBarrier(cmdBuf, …);

…

vkQueueSubmit(queueFamily0,…, submitInfo, …); Semaphore to sync across queues

| VULKANISED | 201967

ACQUIRE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;

imageMemoryBarrier.srcAccessMask = 0;

imageMemoryBarrier.dstAccessMask = …

imageMemoryBarrier.oldLayout = oldLayoutImageA;

imageMemoryBarrier.newLayout = newLayoutImageA;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = imageA;

imageMemoryBarrier .subresourceRange = subresourceRangeImageA;

…

vkCmdPipelineBarrier(cmdBuf, …);

…

vkQueueSubmit(queueFamily1,…, submitInfo, …);

Associated to a commandPool Associated to queue family 1

| VULKANISED | 201968

LET‘S CHECK AGAIN ☺

Use Radeon GPU Profiler (RGP):

| VULKANISED | 201969

LET‘S CHECK AGAIN ☺

Use Radeon GPU Profiler (RGP):

| VULKANISED | 201970

LET‘S CHECK AGAIN ☺

Use Radeon GPU Profiler (RGP):

The performance increased about

~5-10%, depending on AMD graphics

card

| VULKANISED | 201971

LET‘S CHECK AGAIN ☺

Use Radeon GPU Profiler (RGP):

What about this one?

The performance increased about

~5-10%, depending on AMD graphics

card

| VULKANISED | 201972

AND ONCE AGAIN … ☺

Color RT #2 – G-buffer resource #2

| VULKANISED | 201973

AND ONCE AGAIN … ☺

Color RT #2 – G-buffer resource #2

| VULKANISED | 201974

USAGE FLAGS

Post process moved to the compute queue

due to async compute

-> VK_IMAGE_USAGE_STORAGE_BIT

is now required for G-buffer resource #2

Color RT #2 – G-buffer resource #2

| VULKANISED | 201975

USAGE FLAGS

Post process moved to the compute queue

due to async compute

-> VK_IMAGE_USAGE_STORAGE_BIT

is now required for G-buffer resource #2

Color RT #2 – G-buffer resource #2

| VULKANISED | 201976

VK_IMAGE_USAGE_STORAGE_BIT

Spec:

Spec:

„VK_IMAGE_USAGE_STORAGE_BIT specifies that the image can be used to create a VkImageView

suitable for occupying a VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE “

„ A storage image (VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) is a descriptor type associated

with an image resource via an image view that load, store, and atomic operations can be performed

on.“

| VULKANISED | 201977

VK_IMAGE_USAGE_STORAGE_BIT

Spec:

Spec:

-->

„VK_IMAGE_USAGE_STORAGE_BIT specifies that the image can be used to create a VkImageView

suitable for occupying a VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_STORAGE_IMAGE “

„ A storage image (VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) is a descriptor type associated

with an image resource via an image view that load, store, and atomic operations can be performed

on.“

Fragment shader

Color attachment:

G-buffer resource #2
Compute shader

Storage image:

G-buffer resource #2

| VULKANISED | 201978

USAGE FLAGS

Usage flags influencing DCC:

• VK_IMAGE_USAGE_STORAGE_BIT – disables DCC

• VK_IMAGE_USAGE_SAMPLED_BIT – makes DCC less efficient

| VULKANISED | 201979

USAGE FLAGS

Usage flags influencing DCC:

• VK_IMAGE_USAGE_STORAGE_BIT – disables DCC

• VK_IMAGE_USAGE_SAMPLED_BIT – makes DCC less efficient

Always use what you need, but not more

| VULKANISED | 201980

SUMMARY

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT

• use VK_KHR_image_format_list

VK_SHARING_MODE_EXCLUSIVE

• don‘t use sharing mode concurrent in production ready code

• use SHARING_MODE_EXCLUSIVE and transfer queue family ownership when required

USAGE FLAGS

• set all the usage flags you need, but not more

| VULKANISED | 201981

OTHER NIT-PICKS CONCERNING DCC

Decompression

• During transfer operations

• General layout

Depth targets

• Compressed differently

• Above guidelines don‘t apply here

There is no rule without expection

• There might be some tweaks in the driver for specific cards

| VULKANISED | 201982

OTHER NIT-PICKS CONCERNING DCC

Decompression

• During transfer operations

• General layout

Depth targets

• Compressed differently

• Above guidelines don‘t apply here

There is no rule without expection

• There might be some tweaks in the driver for specific cards

| VULKANISED | 201983

SYNCHRONIZATION

Barriers

• Placing

• Batching

• Pipeline stage masks

Cross queue synchronization

I‘m totally innocent

| VULKANISED | 201984

BARRIERS

• Experience with barriers in this particular game

• Most of the issues likely have their roots in the original engine structure, which is DX11-based

| VULKANISED | 201985

BARRIERS

• Experience with barriers in this particular game

• Most of the issues likely have their roots in the original engine structure, which is DX11-based

-> Rearranging barriers to get more overlap between the drawcalls / passes

-> Batching barriers to save some additional time

| VULKANISED | 201986

BARRIERS

• Experience with barriers in this particular game

• Most of the issues likely have their roots in the original engine structure, which is DX11 based

-> Rearranging barriers to get more overlap between the drawcalls / passes

-> Batching barriers to save some additional time

• Other findings

-> Where specifying barriers as precise as possible really pays of

| VULKANISED | 201987

BARRIERS – ORIGINAL SETUP

• The rendering work is logically organized in components – e.g. one shadow map component,
one lighting component etc.

A

B

C
D

| VULKANISED | 201988

BARRIERS – ORIGINAL SETUP

• The rendering work is logically organized in components – e.g. one shadow map component,
one lighting component etc.

A

B

C
D

Constants A

Constants B

Constants C
Constants D

| VULKANISED | 201989

BARRIERS – ORIGINAL SETUP

• Constants information is gathered on the CPU side in the beginning of each frame

• Constants A, B and C are equal, constants D are different

• Component A is independent from Component B

• Component C depends on Component A and B

• Component D depends on Component C

A

B

C
D

Constants A

Constants B

Constants C
Constants D

| VULKANISED | 201990

BARRIERS – ORIGINAL SETUP

• Constants information is gathered on the CPU side in the beginning of each frame

• Constants A, B and C are equal, constants D are different

• Component A is independent from Component B

• Component C depends on Component A and B

• Component D depends on Component C

A

B

C
D

Constants A

Constants B

Constants C
Constants D

| VULKANISED | 201991

BARRIERS – ORIGINAL SETUP

A B

C

Barrier Update constants A Barrier Barrier Update constants B Barrier

Barrier Update constants C Barrier

• Constants information is gathered on the CPU side in the beginning of each frame

• Constants A, B and C are equal, constants D are different

• Component A is independent from Component B

• Component C depends on Component A and B

• Component D depends on Component C

DBarrier Update constants D BarrierBarrier

Barrier

| VULKANISED | 201992

BARRIERS – OPTIMIZED

• Constants information is gathered on the CPU side in the beginning of each frame

• Constants A, B and C are equal, constants D are different

• Component A is independent from Component B

• Component C depends on Component A and B

• Component D depends on Component C

Barrier Update constants A Barrier Barrier Update constants B Barrier

Barrier Update constants C Barrier

A B C

Barrier Update constants D Barrier

DBarrier Barrier

| VULKANISED | 201993

BARRIERS – OPTIMIZED

• Constants information is gathered on the CPU side in the beginning of each frame

• Constants A, B and C are equal, constants D are different

• Component A is independent from Component B

• Component C depends on Component A and B

• Component D depends on Component C

Barrier Update constants A Barrier Barrier Update constants B Barrier

Barrier Update constants C Barrier

A

B
C

Barrier Update constants D Barrier

DBarrier Barrier

| VULKANISED | 201994

BARRIERS – OPTIMIZED

• Constants information is gathered on the CPU side in the beginning of each frame

• Constants A, B and C are equal, constants D are different

• Component A is independent from Component B

• Component C depends on Component A and B

• Component D depends on Component C

Barrier Update constants A Barrier

Barrier Update constants B Barrier

Barrier Update constants C Barrier

A

B

C

Barrier Update constants D Barrier D

Barrier

Barrier

| VULKANISED | 201995

BARRIERS – OPTIMIZED

• Constants information is gathered on the CPU side in the beginning of each frame

• Constants A, B and C are equal, constants D are different

• Component A is independent from Component B

• Component C depends on Component A and B

• Component D depends on Component C

Barrier Update constants Z Barrier
A

B

Barrier Update constants D Barrier

C

D

Barrier

Barrier

| VULKANISED | 201996

BARRIERS – OPTIMIZED

• This is what we ended up with – but it already had observable changes

Barrier Update constants A Barrier Barrier Update constants B Barrier

Barrier Update constants C Barrier

A

B
C

Barrier Update constants D Barrier

DBarrier Barrier

| VULKANISED | 201997

BARRIERS – OPTIMIZED

~15%

-->

| VULKANISED | 201998

BARRIERS – OPTIMIZED

~15%

-->

| VULKANISED | 201999

BARRIER BATCHING

Early builds had several consecutive barriers:

| VULKANISED | 2019100

BARRIER BATCHING

Early builds had several consecutive barriers:

void vkCmdPipelineBarrier(

VkCommandBuffer commandBuffer,

VkPipelineStageFlags srcStageMask,

VkPipelineStageFlags dstStageMask,

VkDependencyFlags dependencyFlags,

uint32_t memoryBarrierCount,

const VkMemoryBarrier* pMemoryBarriers,

uint32_t bufferMemoryBarrierCount,

const VkBufferMemoryBarrier* pBufferMemoryBarriers,

uint32_t imageMemoryBarrierCount,

const VkImageMemoryBarrier* pImageMemoryBarriers);

| VULKANISED | 2019101

BARRIER BATCHING

Early builds had several consecutive barriers:

Example: 2 image layout transitions

vkCmdPipelineBarrier(…, 0, NULL, 0, NULL, 1, &imageBarrierA);

vkCmdPipelineBarrier(…, 0, NULL, 0, NULL, 1, &imageBarrierB);

void vkCmdPipelineBarrier(

VkCommandBuffer commandBuffer,

VkPipelineStageFlags srcStageMask,

VkPipelineStageFlags dstStageMask,

VkDependencyFlags dependencyFlags,

uint32_t memoryBarrierCount,

const VkMemoryBarrier* pMemoryBarriers,

uint32_t bufferMemoryBarrierCount,

const VkBufferMemoryBarrier* pBufferMemoryBarriers,

uint32_t imageMemoryBarrierCount,

const VkImageMemoryBarrier* pImageMemoryBarriers);

| VULKANISED | 2019102

BARRIER BATCHING

Early builds had several consecutive barriers:

Example: 2 image layout transitions

vkCmdPipelineBarrier(…, 0, NULL, 0, NULL, 1, &imageBarrierA);

vkCmdPipelineBarrier(…, 0, NULL, 0, NULL, 1, &imageBarrierB);

->

VkImageMemoryBarrier[2] imageBarriers = {imageBarrierA, imageBarrierB};

vkCmdPipelineBarrier(…, 0, NULL, 0, NULL, 2, &imageBarriers);

void vkCmdPipelineBarrier(

VkCommandBuffer commandBuffer,

VkPipelineStageFlags srcStageMask,

VkPipelineStageFlags dstStageMask,

VkDependencyFlags dependencyFlags,

uint32_t memoryBarrierCount,

const VkMemoryBarrier* pMemoryBarriers,

uint32_t bufferMemoryBarrierCount,

const VkBufferMemoryBarrier* pBufferMemoryBarriers,

uint32_t imageMemoryBarrierCount,

const VkImageMemoryBarrier* pImageMemoryBarriers);

| VULKANISED | 2019103

PIPELINE STAGE MASKS

Top

Draw Indirect

Vertex Input

Vertex Shader

…

Fragment Shader

…

Transfer

Compute Shader

Bottom

Top

Draw Indirect

Vertex Input

Vertex Shader

…

Fragment Shader

…

Transfer

Compute Shader

Bottom

| VULKANISED | 2019104

PIPELINE STAGE MASKS

Top

Draw Indirect

Vertex Input

Vertex Shader

…

Fragment Shader

…

Transfer

Compute Shader

Bottom

Top

Draw Indirect

Vertex Input

Vertex Shader

…

Fragment Shader

…

Transfer

Compute Shader

Bottom

ALL_COMMANDS_BIT

“VK_PIPELINE_STAGE_ALL_COMMANDS_BIT is

equivalent to the logical OR of every other pipeline

stage flag that is supported on the queue it is used

with.”

Spec:

| VULKANISED | 2019105

ALL_COMMANDS_BIT – COMPUTE PIPELINE

Top

Draw Indirect

Vertex Input

Vertex Shader

…

Fragment Shader

…

Transfer

Compute Shader

Bottom

ALL_COMMANDS_BIT

“VK_PIPELINE_STAGE_ALL_COMMANDS_BIT is

equivalent to the logical OR of every other pipeline

stage flag that is supported on the queue it is used

with.”

Spec:

| VULKANISED | 2019106

ALL_COMMANDS_BIT – COMPUTE PIPELINE

Top

Draw Indirect

Vertex Input

Vertex Shader

…

Fragment Shader

…

Transfer

Compute Shader

Bottom

ALL_COMMANDS_BIT

The bottom bit adds a wait on end of pipe + timestamp

-> can take up to ~64k cycles on the async queue 

“VK_PIPELINE_STAGE_ALL_COMMANDS_BIT is

equivalent to the logical OR of every other pipeline

stage flag that is supported on the queue it is used

with.”

Spec:

| VULKANISED | 2019107

ALL_COMMANDS_BIT – COMPUTE PIPELINE

Top

Draw Indirect

Vertex Input

Vertex Shader

…

Fragment Shader

…

Transfer

Compute Shader

Bottom

ALL_COMMANDS_BIT

The bottom bit adds a wait on end of pipe + timestamp

-> can take up to ~64k cycles on the async queue 

Use the specific pipeline stage mask instead of all_commands, e.g.:

VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT |

VK_PIPELINE_STAGE_TRANSFER_BIT

“VK_PIPELINE_STAGE_ALL_COMMANDS_BIT is

equivalent to the logical OR of every other pipeline

stage flag that is supported on the queue it is used

with.”

Spec:

->

| VULKANISED | 2019108

ALL_COMMANDS_BIT – COMPUTE PIPELINE

VK_PIPELINE_STAGE_ALL_COMMANDS_BIT

on async compute queue
->

| VULKANISED | 2019109

ALL_COMMANDS_BIT – COMPUTE PIPELINE

VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT |

VK_PIPELINE_STAGE_TRANSFER_BIT

on async compute queue

->

| VULKANISED | 2019110

CROSS QUEUE SYNCHRONIZATION

The engine used to have ~7 command buffers per frame

| VULKANISED | 2019111

CROSS QUEUE SYNCHRONIZATION

The engine used to have ~7 command buffers per frame

After async compute support was added, the number of command buffers doubled

| VULKANISED | 2019112

CROSS QUEUE SYNCHRONIZATION

Cross queue synchronization is only possible at submission boundaries

| VULKANISED | 2019113

SUMMARY

• Check your barriers if you can rearrange them

• Batch consecutive barriers to a single barrier

• Specify your barriers as precise as possible

• Cross queue synchronization is only possible at submission boundaries

| VULKANISED | 2019114

OTHER SMALL THINGS

• Copy queue

• Compute queue & the swapchain

• Shader building infrastructure

| VULKANISED | 2019115

COPY QUEUE

Resource was copied from GPU to CPU

• Generated on GPU during previous frame

• After the copy overwritten with updated data from current frame

This copy blocked the whole GPU.

-> ~1-2% of frame time

| VULKANISED | 2019116

COPY QUEUE

By using the copy queue, we won the time previously spend for vkCmdCopyImage() back.

| VULKANISED | 2019117

COMPUTE QUEUE & SWAPCHAIN

Write directly from compute to the swapchain

| VULKANISED | 2019118

COMPUTE QUEUE & SWAPCHAIN

Write directly from compute to the swapchain

| VULKANISED | 2019119

COMPUTE QUEUE & SWAPCHAIN

Write directly from compute to the swapchain

Possibly present from compute

Vulkan specific feature

| VULKANISED | 2019120

SHADER BUILDING INFRASTRUCTURE

HLSL
DXC

SPIR-V

| VULKANISED | 2019121

SUMMARY

• Check for compression, especially for the G-buffer render targets

• Take special care of the barriers ☺

• Can you make good use of the copy queue?

• The compute queue can write directly to the swapchain

• Use the DXC compiler

| VULKANISED | 2019122

THANKS TO

Dominik Baumeister

Matthäus Chajdas

Tobias Hector

Adam Sawicki

Rys Sommefeldt

Steven Tovey

Marco Weber

| VULKANISED | 2019123

REFERENCES

https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/

https://gpuopen.com/dcc-overview/

https://gpuopen.com/vulkan-barriers-explained/

https://github.com/GPUOpen-
LibrariesAndSDKs/VulkanMemoryAllocator

https://gpuopen.com/reducing-vulkan-api-call-overhead/

https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/
https://gpuopen.com/dcc-overview/
https://gpuopen.com/vulkan-barriers-explained/
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://gpuopen.com/reducing-vulkan-api-call-overhead/

| VULKANISED | 2019124

Q&A

lou.kramer@amd.com

@lou_auroyup

https://gpuopen.com/

mailto:lou.kramer@amd.com
https://gpuopen.com/

| VULKANISED | 2019125

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard
version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no
obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without
obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT,
INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

ATTRIBUTION

© 2019 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other
jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

