AMDZ1

OPTIMISING A AAA VULKAN
TITLE ON DESKTOP

RRRRRRRRR

LOU KRAMER

DEVELOPER TECHNOLOGY ENGINEER
AMD

2 | VULKANISED| 2019 AMDA\

THE GAME

First Vulkan game using the engine

Engine had existing DX11 and DX12 support on top of an internal
rendering API

Once the Vulkan version was somewhat stable, we started to look at
the performance side of things ©

AMDZ1

THE GAME

Best practices
-> hopefully minor changes only

Other optimization opportunities?

-> require probably a bit more work
-> start early enough, can introduce new problems

AMDZ1

BEST PRACTICES

Is compression enabled for the G-buffer render targets?
How do the barriers look?

Can we make use of the copy queue?

What about the shader building infrastructure?

... usage flags, use of correct layouts, etc.

AMDZ1

5 | VULKANISED| 2019

BEST PRACTICES

Is compression enabled for the G-buffer render targets?

How do the barriers look?

Can we make use of the copy queue?

What about the shader building infrastructure?
... usage flags, use of correct layouts, etc.

6 | VULKANISED| 2019

7

This is a checklist you can follow
through and verify for your own engine

AMDZ1

OTHER OPTIMIZATION
OPPORTUNITIES

Very engine specific
In this particular case, there was a great async compute opportunity

7 | VULKANISED| 2019 AMDA

OTHER OPTIMIZATION
OPPORTUNITIES

Very engine specific
In this particular case, there was a great async compute opportunity

8 | VULKANISED| 2019 AMDA

OTHER OPTIMIZATION
OPPORTUNITIES

Very engine specific
In this particular case, there was a great async compute opportunity

9 | VULKANISED| 2019 AMDA

OTHER OPTIMIZATION
OPPORTUNITIES

Very engine specific
In this particular case, there was a great async compute opportunity

Vulkan specific feature

1111111111111111 AMDA

DCC — Delta Color Compression
Barriers &) and other

AGENDA synchronization hassles
Other small things

Q&A

11 | VULKANISED | 2019 AMDa

DCC — Delta Color Compression

AGENDA Barriers @ and other
OR THE PREVIOUSLY synchronization hassles
MENTIONED CHECKLIST Other small things
Q&A

1111111111111111 AMDZXU

DCC — Delta Color Compression

AGENDA Barriers @ and other
OR THE PREVIOUSLY synchronization hassles
MENTIONED CHECKLIST Other small things
Q&A

+ async compute opportunity

13 | VULKANISED | 2019 AMDH

DCC — DELTA COLOR
COMPRESSION

What is DCC?
Why do we want it
-> Performance impact

How to enable DCC?
-> the journey of enabling DCC for this game ¢

1111111111111111 AMDZXU

WHAT IS DCC?

DCC — Delta Color Compression

Takes advantage of the fact that render targets tend to store slowly varying data
E.g. a blue sky will have little variance between the pixels

15 | VULKANISED | 2019 AMDH

WHAT IS DCC?

DCC — Delta Color Compression

Takes advantage of the fact that render targets tend to store slowly varying data
E.g. a blue sky will have little variance between the pixels

16 | VULKANISED| 2019 AMDA\

WHAT IS DCC?

DCC — Delta Color Compression

Takes advantage of the fact that render targets tend to store slowly varying data
E.g. a blue sky will have little variance between the pixels

=,

Stores whole blocks — one value is stored with full precision, rest is stored as delta
It's lossless

17 | VULKANISED| 2019 AMDA\

WHY DO WE WANT DCC?

It's a bandwidth saver

Take a special emphasis in enabling DCC for the G-buffer render targets
they usually benefit a lot from bandwidth savings

AMDZ1

WHY DO WE WANT DCC?

It's a bandwidth saver

Take a special emphasis in enabling DCC for the G-buffer render targets
they usually benefit a lot from bandwidth savings

How much?
Depends on workload and varies between graphics card

But in this particular game title, we observed speed-ups on all tested AMD GPUs, ranging

between
~5-10%

19 | VULKANISED | 2019 AMDH

WHY DO WE WANT DCC?

It's a bandwidth saver

Take a special emphasis in enabling DCC for the G-buffer render targets
they usually benefit a lot from bandwidth savings

How much?
Depends on workload and varies between graphics card

But in this particular game title, we observed speed ups on all tested AMD GPUSs, ranging

between
~5-10%

20 | VULKANISED| 2019

AMDZ1

HOW DO | KNOW DCC IS ENABLED?

Use Radeon GPU Profiler (RGP):

21 | VULKANISED| 2019

File View Help

Frame summary

Barriers

Most expensive events
Context rolls
Render/depth targets
Pipelines

Device configuration

v ! Color pass #1

0.000 ms 2.000 ms

‘IIIH\III‘IIIIH\I\‘\IIIIIII\‘HIIIII
Color

Color RT #3

AMDZ1

22

HOW DO | KNOW DCC IS ENABLED?

Use Radeon GPU Profiler (RGP):

Name

Color RT #0
I Color RT #1
B Color RT #2

Color RT #3

VULKANISED |

2019

Format
VK_FORMAT _R8G8BBA8_SRGB
VK_FORMAT A2R10G10B10_UNORM_PACK32
VK_FORMAT_R8G8B8A8_UNORM

VK_FORMAT_R8GBBBAS_UNORM

Width
3840
3840
3840
3840

Height
2160
2160
2160
2160

File View Help

<

Frame summary

Barriers

Most expensive events
Context rolls
Render/depth targets
Pipelines

Device configuration

Size in memory Draw calls
32 MB 1874
32 MB 1577
32MB 1870
32 MB 1871

Compression

OFF

OFF

OFF
OFF

OVERVIEW

Color pass #1

0.000 ms 2.000 ms

‘IIIH\III‘IIIIH\I\‘\IIIIIII\‘HIIIII
Color

Color RT #3

Pixel wavefront ratio Sample count

I 178% 1
I 178% 1
I 173% 1
I 178% 1

Out of order draw calls
0/ 1874
0/ 1577
0/ 1870
0/ 1871

Duration
5.044 ms
3.761 ms
4.332 ms

4.671 ms

AMDZ1

23

HOW DO | KNOW DCC IS ENABLED?

File View Help

<

Use Radeon GPU Profiler (RGP):

Name

Color RT #0
I Color RT #1
B Color RT #2

Color RT #3

VULKANISED |

2019

Format
VK_FORMAT _R8G8BBA8_SRGB
VK_FORMAT A2R10G10B10_UNORM_PACK32
VK_FORMAT_R8G8B8A8_UNORM

VK_FORMAT_R8GBBBAS_UNORM

Width
3840
3840
3840
3840

Height
2160
2160
2160
2160

Frame summary
Barriers

Most expensive events
Context rolls
Render/depth targets
Pipelines

Device configuration

Size in memory Draw calls
32 MB 1874
32 MB 1577
32MB 1870
32 MB 1871

OVERVIEW

v ! Color pass #1
0.000 ms 2.000 ms
‘III\HIII‘IIIIH\I\‘\IIIIIII\‘HIIIII
Color

Color RT #3

Pixel wavefront ratio

Compression

Sample count

OFF I 178% 1
I 178% 1
I 173% 1
I 178% 1

Out of order draw calls
0/ 1874
0/ 1577
0/ 1870
0/ 1871

Duration
5.044 ms
3.761 ms
4.332 ms

4.671 ms

AMDZ1

24

HOW DO | KNOW DCC IS ENABLED?

File View Help

<

Use Radeon GPU Profiler (RGP):

Name

Color RT #0
I Color RT #1
B Color RT #2

Color RT #3

VULKANISED |

2019

Format
VK_FORMAT _R8G8BBA8_SRGB
VK_FORMAT A2R10G10B10_UNORM_PACK32
VK_FORMAT_R8G8B8A8_UNORM

VK_FORMAT_R8GBBBAS_UNORM

Width
3840
3840
3840
3840

Height
2160
2160
2160
2160

Frame summary
Barriers

Most expensive events
Context rolls
Render/depth targets
Pipelines

Device configuration

Size in memory Draw calls
32 MB 1874
32 MB 1577
32MB 1870
32 MB 1871

OVERVIEW

v ! Color pass #1
0.000 ms 2.000 ms
‘III\HIII‘IIIIH\I\‘\IIIIIII\‘HIIIII
Color

Color RT #3

Pixel wavefront ratio

Compression

Sample count

OFF I 178% 1
I 178% 1
I 173% 1
I 178% 1

Out of order draw calls
0/ 1874
0/ 1577
0/ 1870
0/ 1871

Duration
5.044 ms
3.761 ms
4.332 ms

4.671 ms

AMDZ1

DCC IS TURNED OFF = WHY?

You can check the format
Float format
Integer format

Name Format Width Height Size in memory Draw calls Compression Pixel wavefront ratio Sample count Out of order draw calls Duration
Color RT #0 VK_FORMAT R8G8BBAS_SRGB 3840 2160 32 MB 1874 OFF 178% 1 0/1874 5.044 ms
I Color RT #1 VK_FORMAT A2R10G10B10_UNORM_PACK32 3840 2160 32 MB 1577 OFF 178% 1 0/ 1577 3.761 ms
B Color RT #2 VK_FORMAT_R8G8BSAS_UNORM 3840 2160 32 MB 1870 178% 1 0/ 1870 4.332 ms

Color RT #3 VK_FORMAT_R8GBBBAS_UNORM 3840 2160 32 MB 1871 178% 1 0/ 1871 4.671 ms

I
I
I
I
25 | VULKANISED | 2019 : AMDH

26

DCC IS TURNED OFF = WHY?

You can check the format

Float format
Integer format

All of the below are supported

Name

Color RT #0
I Color RT #1
B Color RT #2

Color RT #3

| VULKANISED | 2019

Format
VK_FORMAT _R8G8BBA8_SRGB
VK_FORMAT A2R10G10B10_UNORM_PACK32
VK_FORMAT_R8G8B8A8_UNORM

VK_FORMAT_R8GBBBAS_UNORM

Width
3840
3840
3840
3840

Height

2160

2160

2160
2160

Size in memory
32 MB
32 MB
32MB
32 MB

Draw calls
1874
1577
1870
1871

Compression Pixel wavefront ratio

OFF

OFF

178%

178%

178%

178%

Sample count
1
1
1

Out of order draw calls
0/ 1874
0/ 1577
0/ 1870
0/ 1871

Duration
5.044 ms
3.761 ms
4.332 ms

4.671 ms

AMDZ1

DCC IS TURNED OFF = WHY?

Retrieve some more resource details from RenderDoc: | X Resource Inspector X |
v vkCreatelmage
device Device 10 &~
v Createlnfo VklmageCreatelnfo()

sType VK _STRUCTURE TYPE IMAGE CREATE INFO
pNext NULL
flags VK IMAGE_CREATE MUTABLE FORMAT BIT
imageType VK_IMAGE_TYPE_2D
format VK_FORMAT_R8G8B8A8_SRGB

> extent VkExtent3D()
mipLevels 1
arraylayers 1
samples VK_SAMPLE_COUNT_1_BIT
tiling VK_IMAGE_TILING_OPTIMAL
usage VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED _BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT BIT
sharingMode VK_SHARING_MODE EXCLUSIVE

queueFamilylndexCount |0
pQueueFamilylndices uint32_t[]
initialLayout VK _IMAGE_LAYOUT UNDEFINED

AMDZ1

DCC IS TURNED OFF = WHY?

Retrieve some more resource details from RenderDoc: | X Resource Inspector X |
v vkCreatelmage
device Device 10 &~
v Createlnfo VklmageCreatelnfo()

sType VK _STRUCTURE TYPE IMAGE CREATE INFO
pNext NULL
flags VK IMAGE_CREATE MUTABLE FORMAT BIT
imageType VK_IMAGE_TYPE_2D
format VK_FORMAT_R8G8B8A8_SRGB V

> extent VkExtent3D()
mipLevels 1
arraylayers 1
samples VK_SAMPLE_COUNT_1_BIT
tiling VK_IMAGE_TILING_OPTIMAL
usage VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED _BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT BIT
sharingMode VK_SHARING_MODE EXCLUSIVE

queueFamilylndexCount |0
pQueueFamilylndices uint32_t[]
initialLayout VK _IMAGE_LAYOUT UNDEFINED

AMDZ1

DCC IS TURNED OFF = WHY?

Retrieve some more resource details from RenderDoc: | X Resource Inspector X |
v vkCreatelmage
device Device 10 &~
v Createlnfo VklmageCreatelnfo()

sType VK _STRUCTURE TYPE IMAGE CREATE INFO
pNext NULL
flags VK IMAGE_CREATE MUTABLE FORMAT BIT
imageType VK_IMAGE_TYPE_2D
format VK_FORMAT_R8G8B8A8_SRGB V

> extent VkExtent3D()
mipLevels 1
arraylayers 1
samples VK_SAMPLE_COUNT_1_BIT
tiling VK_IMAGE_TILING_OPTIMAL
usage VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED _BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT BIT V
sharingMode VK_SHARING_MODE EXCLUSIVE

queueFamilylndexCount |0
pQueueFamilylndices uint32_t[]
initialLayout VK _IMAGE_LAYOUT UNDEFINED

AMDZ1

DCC IS TURNED OFF = WHY?

Retrieve some more resource details from RenderDoc: | X Resource Inspector X |
v vkCreatelmage
device Device 10 &~
v Createlnfo VklmageCreatelnfo()

sType VK _STRUCTURE TYPE IMAGE CREATE INFO
pNext NULL
flags VK IMAGE_CREATE MUTABLE FORMAT BIT
imageType VK_IMAGE_TYPE_2D
format VK_FORMAT_R8G8B8A8_SRGB V

> extent VkExtent3D()
mipLevels 1
arraylayers 1
samples VK_SAMPLE_COUNT_1_BIT
tiling VK_IMAGE_TILING_OPTIMAL
usage VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED _BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT BIT V
sharingMode VK_SHARING_MODE EXCLUSIVE v

queueFamilylndexCount |0
pQueueFamilylndices uint32_t[]
initialLayout VK _IMAGE_LAYOUT UNDEFINED

AMDZ1

DCC IS TURNED OFF = WHY?

Retrieve some more resource details from RenderDoc: | X Resource Inspector X |
v vkCreatelmage
device Device 10 &~
v Createlnfo VklmageCreatelnfo()

sType VK _STRUCTURE TYPE IMAGE CREATE INFO
pNext NULL
flags IVK?IMAGEfCREATEfMUTABLE?FORMAT?BIT I
imageType VK_IMAGE_TYPE_2D
format VK_FORMAT_R8G8B8A8_SRGB V

> extent VkExtent3D()
mipLevels 1
arraylayers 1
samples VK_SAMPLE_COUNT_1_BIT
tiling VK_IMAGE_TILING_OPTIMAL
usage VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED _BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT BIT V
sharingMode VK_SHARING_MODE EXCLUSIVE V

queueFamilylndexCount |0
pQueueFamilylndices uint32_t[]
initialLayout VK _IMAGE_LAYOUT UNDEFINED

31 | VULKANISED| 2019 AMDH

DCC IS TURNED OFF = WHY?

Retrieve some more resource details from RenderDoc: | X Resource Inspector X |
v vkCreatelmage
device Device 10 &~
v Createlnfo VklmageCreatelnfo()

sType VK _STRUCTURE TYPE IMAGE CREATE INFO
phiext ML VK _IMAGE_CREATE_MUTABLE_FORMAT_BIT
flags IVK?IMAGEfCREATEfMUTABLEfFORMAT?BITI . ., — — —
imageType VK_IMAGE_TYPE_2D dlsables DCC
format VK_FORMAT_R8G8B8A8_SRGB V

> extent VkExtent3D()
mipLevels 1
arraylayers 1
samples VK_SAMPLE_COUNT_1_BIT
tiling VK_IMAGE_TILING_OPTIMAL
usage VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED _BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT BIT V
sharingMode VK_SHARING_MODE EXCLUSIVE V

queueFamilylndexCount |0
pQueueFamilylndices uint32_t[]
initialLayout VK _IMAGE_LAYOUT UNDEFINED

32 | VULKANISED| 2019 AMDH

DCC IS TURNED OFF = WHY?

Retrieve some more resource details from RenderDoc: | X Resource Inspector X |
v vkCreatelmage
device Device 10 &~
v Createlnfo VklmageCreatelnfo()

sType VK _STRUCTURE TYPE IMAGE CREATE INFO
phiext ML VK _IMAGE_CREATE_MUTABLE_FORMAT_BIT
flags IVK?IMAGEfCREATEfMUTABLEfFORMAT?BITI . ., — — —
imageType VK_IMAGE_TYPE_2D dlsables DCC Q
format VK_FORMAT_R8G8B8A8_SRGB V N\e\\(’

> extent VkExtent3D()
mipLevels 1
arraylayers 1
samples VK_SAMPLE_COUNT_1_BIT
tiling VK_IMAGE_TILING_OPTIMAL
usage VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED _BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT BIT V
sharingMode VK_SHARING_MODE EXCLUSIVE V

queueFamilylndexCount |0
pQueueFamilylndices uint32_t[]
initialLayout VK _IMAGE_LAYOUT UNDEFINED

33 | VULKANISED| 2019 AMDH

VK IMAGE CREATE MUTABLE FORMAT BIT

DCC only works for float XOR integer formats
-> R16G16B16A16 SFLOAT, DCC is supported
-> R16G16B16A16 UNORM, DCC is supported

Etc.

34 | VULKANISED| 2019 AMDH

VK IMAGE CREATE MUTABLE FORMAT BIT

DCC only works for float XOR integer formats
-> R16G16B16A16 SFLOAT, DCC is supported
-> R16G16B16A16 UNORM, DCC is supported

Etc.

How does the driver know the format of the image?
VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK FORMAT R8G8BESA8 SRGB;

35 | VULKANISED| 2019 AMDH

VK IMAGE CREATE MUTABLE FORMAT BIT

DCC only works for float XOR integer formats
-> R16G16B16A16 SFLOAT, DCC is supported
-> R16G16B16A16 UNORM, DCC is supported

Etc.

How does the driver know the format of the image?
VkImageCreateInfo imageCreateInfo = {};

imageCreateInfo.format = VK FORMAT R8G8BESA8 SRGB;

What happens when the mutable bit is set?

36 | VULKANISED| 2019 AMDH

VK IMAGE CREATE MUTABLE FORMAT BIT

VkImageCreateInfo 1mageCreatelnfo = {};
imageCreateInfo.format = VK FORMAT R8G8B8A8 SRGB;
imageCreateInfo.flags = VK IMAGE CREATE MUTABLE FORMAT BIT;

Spec:

“VK_IMAGE_CREATE_MUTABLE_FORMAT _BIT specifies that the image can be used to create a
VkimageView with a different format from the image.”

37 | VULKANISED| 2019

AMDZ1

VK IMAGE CREATE MUTABLE FORMAT BIT

VkImageCreateInfo 1mageCreatelnfo = {};
imageCreateInfo.format = VK FORMAT R8G8B8A8 SRGB;
imageCreateInfo.flags = VK IMAGE CREATE MUTABLE FORMAT BIT;

Spec:

“VK_IMAGE_CREATE_MUTABLE_FORMAT _BIT specifies that the image can be used to create a
VkimageView with a different format from the image.”

-> The driver can‘t rely on the format information from the VkimageCreatelnfo struct anymore

38 | VULKANISED| 2019 AMDH

VK IMAGE CREATE MUTABLE FORMAT BIT

-> The driver can't rely on the format information from the VkimageCreatelnfo struct anymore
For float XOR integer, the driver needs to distinguish between:

Image views with integer AND float formats are used on the image -> DCC must be disabled
Unsupported format is used -> DCC must be disabled

Only integer formats are used, e.g. UNORM and SRGB -> DCC can be enabled

Only float formats are used -> DCC can be enabled p

The driver can’t know if enabling DCC is safe by simply looking at the mutable bit. ? @

39 | VULKANISED| 2019 AMDH

VK IMAGE CREATE MUTABLE FORMAT BIT

-> The driver can't rely on the format information from the VkimageCreatelnfo struct anymore
For float XOR integer, the driver needs to distinguish between:

Image views with integer AND float formats are used on the image -> DCC must be disabled
Unsupported format is used -> DCC must be disabled

Only integer formats are used, e.g. UNORM and SRGB -> DCC can be enabled

Only float formats are used -> DCC can be enabled ’P

The driver can’t know if enabling DCC is safe by simply looking at the mutable bit. @ ,P

40 | VULKANISED| 2019 AMDH

VK IMAGE CREATE MUTABLE FORMAT BIT

-> The driver can't rely on the format information from the VkimageCreatelnfo struct anymore
For float XOR integer, the driver needs to distinguish between:

Image views with integer AND float formats are used on the image -> DCC must be disabled
Unsupported format is used -> DCC must be disabled

Only integer formats are used, e.g. UNORM and SRGB -> DCC can be enabled

Only float formats are used -> DCC can be enabled p

The driver can’t know if enabling DCC is safe by simply looking at the mutable bit. ? @

41 | VULKANISED| 2019 AMDH

VK IMAGE CREATE MUTABLE FORMAT BIT

The driver can’t know if enabling DCC is safe by simply looking at the mutable bit.
-> provide additional information by using

VK_KHR_image format_list

typedef struct VkImageFormatlListCreateInfoKHR {

VkStructureType sType;

const void* pNext;

uint32 t viewFormatCount;
const VkFormat* pViewFormats;

} VkImageFormatListCreateInfoKHR;

42 | VULKANISED| 2019 AMDH

VK IMAGE CREATE MUTABLE FORMAT BIT

VkImageFormatListCreateInfoKHR imageFormatList = {};

imageFormatList.sType = VK STRUCTURE TYPE IMAGE FORMAT LIST CREATE INFO KHR

imageFormatList.pNext = .. ;
imageFormatList.viewFormatCount = formatCount;

imageFormatList.pViewFormats = formats; // array of VkFormat

VkImageCreateInfo imageCreatelInfo = {};
imageCreateInfo.format = VK FORMAT R8G8B8A8 SRGB;
imageCreateInfo.flags = VK IMAGE CREATE MUTABLE FORMAT BIT;

imageCreateInfo.pNext = &imageFormatList;

43 | VULKANISED| 2019 AMDa

44

VK IMAGE CREATE MUTABLE FORMAT BIT

VULKANISED |

v vkCreatelmage
device
v Createlnfo
sType
wv pNext
sType
pNext
viewFormatCount
W pViewFormats
[0]
[1]
flags
imageType
format
> extent
mipLevels
arraylayers
samples
tiling
usage
sharingMode
queueFamilylndexCount

? pQueueFamilyindices

initialLayout

2019

Device 10 &
VkimageCreatelnfo()
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO

VkimageFormatListCreatelnfoKHR()
VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR
NULL

2

VkFormat]

VK_FORMAT_R8G8B8A8_UNORM

VK_FORMAT_UNDEFINED

VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT
VK_IMAGE_TYPE 2D

VK _FORMAT R8G8B8A8 SRGB
VkExtent3D()

1

1

VK_SAMPLE_COUNT_1_BIT

VK IMAGE_TILING_OPTIMAL
VK_IMAGE_USAGE TRANSFER SRC BIT | VK_IMAGE USAGE TRANSFER DST BIT | VK IMAGE_USAGE SAMPLED BIT | VK IMAGE USAGE COLOR ATTACHMENT BIT
VK_SHARING_MODE_CONCURRENT

3

uint32_t[]

VK_IMAGE_LAYOUT_UNDEFINED

AMDZ1

45

DOUBLE-CHECK IF THE CHANGE HAD THE
INTENDED EFFECT ...

File View Help

<

Use Radeon GPU Profiler (RGP):

Name

Color RT #0
I Color RT #1
B Color RT #2

Color RT #3

VULKANISED |

2019

Format
VK_FORMAT _R8G8BBA8_SRGB
VK_FORMAT A2R10G10B10_UNORM_PACK32
VK_FORMAT_R8G8B8A8_UNORM

VK_FORMAT_R8GBBBAS_UNORM

Width
3840
3840
3840
3840

Height
2160
2160
2160
2160

Frame summary
Barriers

Most expensive events
Context rolls
Render/depth targets
Pipelines

Device configuration

Size in memory Draw calls
32 MB 1874
32 MB 1577
32MB 1870
32 MB 1871

OVERVIEW

Color

Compression

OFF
OFF

0.000 ms

Color pass #1
2.000 ms

Color RT #3

Pixel wavefront ratio

178%

178%

178%

178%

Sample count
1
1
1

Out of order draw calls
0/ 1874
0/ 1577
0/ 1870
0/ 1871

Duration
5.044 ms
3.761 ms
4.332 ms

4.671 ms

AMDZ1

DOUBLE-CHECK IF THE CHANGE HAD THE
INTENDED EFFECT ...

File View Help

Use Radeon GPU Profiler (RGP): < OVERVIEW

Frame summary

Barriers h ' Color pass #1
Most expensive events 0.000 ms 2.000 ms
I Context rolls ‘ ‘
It did not ... N
Color

Render/depth targets

Pipelines
Color RT #3

peviee configuration ColorRT#2

Name Format Width Height Size in memory Draw calls Compression Pixel wavefront ratio Sample count Out of order draw calls Duration

Color RT #0 VK_FORMAT_R8GSBSAS_SRGB 3840 2160 32 MB 1874 OFF I 175% 1 0/ 1874 5.044 ms
I Color RT #1 VK_FORMAT_A2R10G10B10_UNORM_PACK32 3840 2160 32 MB 1577 OFF N 178% 1 0/ 1577 3.761 ms
B Color RT #2 VK_FORMAT_R8G8BSAS_UNORM 3840 2160 32 MB 1870 I 178% 1 0/ 1870 4.332 ms

Color RT #3 VK_FORMAT_R8GS8BSAS_UNORM 3840 2160 32 MB 1871 I 175% 1 0/ 1871 4.671 ms

46 | VULKANISED| 2019 AMDH

a7

DOUBLE-CHECK IF THE CHANGE HAD THE
INTENDED EFFECT ...

File View Help

<

Use Radeon GPU Profiler (RGP):

It did not ...

ot

Name Format

Color RT #0 VK_FORMAT _R8G8BBA8_SRGB
I Color RT #1 VK_FORMAT A2R10G10B10_UNORM_PACK32
B Color RT #2 VK_FORMAT_R8G8B8A8_UNORM

Color RT #3 VK_FORMAT R8GBB8A8_UNORM

| VULKANISED | 2019

Width

3840

3840

3840
3840

Height

2160

2160

2160
2160

Frame summary
Barriers

Most expensive events
Context rolls
Render/depth targets
Pipelines

Device configuration

Size in memory Draw calls
32 MB 1874
32 MB 1577
32MB 1870
32 MB 1871

OVERVIEW

0.000 ms

Color

Compression

OFF
OFF

Color pass #1
2.000 ms

Color RT #3

Pixel wavefront ratio

178%

178%

178%

178%

Sample count
1
1
1

Out of order draw calls
0/ 1874
0/ 1577
0/ 1870
0/ 1871

Duration
5.044 ms
3.761 ms
4.332 ms

4.671 ms

AMDZ1

LET'S EXAMINE CREATE IMAGE INFO AGAIN

v vkCreatelmage
device Device 10 &
s\ Createlnfo VkimageCreatelnfo()
sType VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO
wv pNext VklmageFormatListCreatelnfoKHR()
sType VK_STRUCTURE_TYPE_IMAGE_FORMAT _LIST_CREATE_INFO_KHR
pNext NULL
viewFormatCount 2
W pViewFormats VkFormat]
[0] VK_FORMAT_R8G8B8A8 UNORM
[1 VK_FORMAT_UNDEFINED
flags VK_IMAGE_CREATE_MUTABLE_FORMAT _BIT
imageType VK _IMAGE TYPE 2D
format VK_FORMAT_R8G8B8A8 SRGB
Y extent VkExtent3D()
mipLevels 1
arraylayers 1
samples VK_SAMPLE_COUNT_1_BIT
tiling VK_IMAGE_TILING_OPTIMAL
usage VK_IMAGE_USAGE_TRANSFER _SRC BIT | VK_IMAGE_USAGE _TRANSFER DST BIT | VK_IMAGE_USAGE SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT BIT
sharingMode VK_SHARING_MODE_CONCURRENT
queueFamilylndexCount |3
? pQueueFamilyindices uint32_t[]
initialLayout VK_IMAGE_LAYOUT_UNDEFINED

48 | VULKANISED| 2019 AMDH

LET'S EXAMINE CREATE IMAGE INFO AGAIN

v vkCreatelmage
device Device 10 &
s\ Createlnfo VkimageCreatelnfo()
sType VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO
wv pNext VklmageFormatListCreatelnfoKHR()
sType VK_STRUCTURE_TYPE_IMAGE_FORMAT _LIST_CREATE_INFO_KHR
pNext NULL
viewFormatCount 2
W pViewFormats VkFormat]
[0] VK_FORMAT_R8G8B8A8 UNORM
[1 VK_FORMAT_UNDEFINED
flags VK_IMAGE_CREATE_MUTABLE_FORMAT _BIT
imageType VK _IMAGE TYPE 2D
format VK_FORMAT_R8G8B8A8 SRGB
Y extent VkExtent3D()
mipLevels 1
arraylayers 1
samples VK_SAMPLE_COUNT_1_BIT
tiling VK_IMAGE_TILING_OPTIMAL
usage VK_IMAGE_USAGE_TRANSFER _SRC BIT | VK_IMAGE_USAGE _TRANSFER DST BIT | VK_IMAGE_USAGE SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT BIT
sharingMode VK_SHARING_MODE_CONCURRENT
queueFamilylndexCount |3
? pQueueFamilyindices uint32_t[]
initialLayout VK_IMAGE_LAYOUT_UNDEFINED

49 | VULKANISED| 2019 AMDH

LET'S EXAMINE CREATE IMAGE INFO AGAIN

v vkCreatelmage
device Device 10 &
s\ Createlnfo VkimageCreatelnfo()
sType VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO
wv pNext VklmageFormatListCreatelnfoKHR()
sType VK_STRUCTURE_TYPE_IMAGE_FORMAT _LIST_CREATE_INFO_KHR
pNext NULL
viewFormatCount 2
W pViewFormats VkFormat]
[0] VK_FORMAT_R8G8B8A8 UNORM
[1 VK_FORMAT_UNDEFINED
flags VK_IMAGE_CREATE_MUTABLE_FORMAT _BIT
imageType VK _IMAGE TYPE 2D
format VK_FORMAT_R8G8B8A8 SRGB V
Y extent VkExtent3D()
mipLevels 1
arraylayers 1
samples VK_SAMPLE_COUNT_1_BIT
tiling VK_IMAGE_TILING_OPTIMAL
usage VK_IMAGE_USAGE_TRANSFER _SRC BIT | VK_IMAGE_USAGE _TRANSFER DST BIT | VK_IMAGE_USAGE SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT BIT
sharingMode VK_SHARING_MODE_CONCURRENT
queueFamilylndexCount |3
? pQueueFamilyindices uint32_t[]
initialLayout VK_IMAGE_LAYOUT_UNDEFINED

50 | VULKANISED| 2019 AMDH

LET'S EXAMINE CREATE IMAGE INFO AGAIN

v vkCreatelmage
device Device 10 &
s\ Createlnfo VkimageCreatelnfo()
sType VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO
wv pNext VklmageFormatListCreatelnfoKHR()
sType VK_STRUCTURE_TYPE_IMAGE_FORMAT _LIST_CREATE_INFO_KHR
pNext NULL
viewFormatCount 2
W pViewFormats VkFormat]
[0] VK_FORMAT_R8G8B8A8 UNORM
[1 VK_FORMAT_UNDEFINED
flags VK_IMAGE_CREATE_MUTABLE_FORMAT _BIT
imageType VK _IMAGE TYPE 2D
format VK_FORMAT_R8G8B8A8 SRGB V
Y extent VkExtent3D()
mipLevels 1
arraylayers 1
samples VK_SAMPLE_COUNT_1_BIT
tiling VK_IMAGE_TILING_OPTIMAL
usage VK_IMAGE_USAGE_TRANSFER _SRC BIT | VK_IMAGE_USAGE _TRANSFER DST BIT | VK_IMAGE_USAGE SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT BIT V
sharingMode VK_SHARING_MODE_CONCURRENT
queueFamilylndexCount |3
? pQueueFamilyindices uint32_t[]
initialLayout VK_IMAGE_LAYOUT_UNDEFINED

51 | VULKANISED| 2019 AMDH

52

LET'S EXAMINE CREATE IMAGE INFO AGAIN

VULKANISED |

v vkCreatelmage
device

v Createlnfo

Device 10 &
VkimageCreatelnfo()

2019

sType

wv pNext

sType
pNext
viewFormatCount
W pViewFormats
[a]
[1]
flags
imageType
format
extent
mipLevels
arraylayers
samples
tiling
usage

sharingMode

queueFamilylndexCount

pQueueFamilyindices

initialLayout

VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO
VkimageFormatListCreatelnfoKHR()
VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR
NULL

2

VkFormat]

VK_FORMAT_R8G8B8A8_UNORM

VK_FORMAT_UNDEFINED
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT
VK_IMAGE_TYPE 2D

VK_FORMAT_R8G8B8A8_SRGB V

VkExtent3D()

1

1

VK_SAMPLE_COUNT_1_BIT

VK_IMAGE_TILING_OPTIMAL

VK_IMAGE_USAGE TRANSFER SRC BIT | VK IMAGE USAGE TRANSFER DST BIT | VK IMAGE_USAGE SAMPLED BIT | VK_IMAGE USAGE COLOR ATTACHMENT BIT V

VK_SHARING_MODE_CONCURRENT

3
uint32_t[]
VK_IMAGE_LAYOUT_UNDEFINED

AMDZ1

53

LET'S EXAMINE CREATE IMAGE INFO AGAIN

v vkCreatelmage
device
v Createlnfo
sType
wv pNext
sType
pNext
viewFormatCount
W pViewFormats
[a]
[1]
flags
imageType
format
> extent
mipLevels
arraylayers
samples
tiling
usage
sharingMode
queueFamilylndexCount

? pQueueFamilyindices

initialLayout

| VULKANISED | 2019

Device 10 &

VkimageCreatelnfo()

VK _STRUCTURE TYPE IMAGE_CREATE INFO
VkimageFormatListCreatelnfoKHR()
VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR

- Async compute support was added to the engine!
VkFormat]
VK_FORMAT_REGEBEA8 UNORM As a side-effect, now all resources have by

VK_FORMAT UNDEFINED
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT
VK_IMAGE_TYPE 2D

VK_FORMAT R8G8B8A8 SRGB V
VkExtent3D()

1

1

VK_SAMPLE_COUNT_1_BIT
VK_IMAGE_TILING_OPTIMAL
VK_IMAGE_USAGE TRANSFER SRC BIT | VK IMAGE USAGE TRANSFER DST BIT | VK IMAGE_USAGE SAMPLED BIT | VK_IMAGE USAGE COLOR ATTACHMENT BIT V

default sharing mode concurrent

VK_SHARING_MODE_CONCURRENT

3
uint32_t[]
VK_IMAGE_LAYOUT_UNDEFINED

AMDZ1

54

LET'S EXAMINE CREATE IMAGE INFO AGAIN

v vkCreatelmage
device
v Createlnfo
sType
wv pNext
sType
pNext
viewFormatCount
W pViewFormats
[0]
[1]
flags
imageType
format
> extent
mipLevels
arraylayers
samples
tiling
usage
sharingMode
queueFamilylndexCount

? pQueueFamilyindices

initialLayout

| VULKANISED | 2019

Device 10 &

VkimageCreatelnfo()

VK _STRUCTURE TYPE IMAGE_CREATE INFO
VkimageFormatListCreatelnfoKHR()
VK_STRUCTURE_TYPE_IMAGE_FORMAT_LIST_CREATE_INFO_KHR

- Async compute support was added to the engine!
VkFormat]
VK_FORMAT_REGEBEA8 UNORM As a side-effect, now all resources have by

VK_FORMAT UNDEFINED
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT
VK_IMAGE_TYPE 2D

VK_FORMAT R8G8B8A8 SRGB V
VkExtent3D()

1

1

VK_SAMPLE_COUNT_1_BIT
VK_IMAGE_TILING_OPTIMAL
VK_IMAGE_USAGE TRANSFER SRC BIT | VK_IMAGE USAGE TRANSFER DST BIT | VK IMAGE U<

default sharing mode concurrent

VK_SHARING_MODE_CONCURRENT

3
uint32_t[]
VK_IMAGE_LAYOUT_UNDEFINED

AMDZ1

VK SHARING MODE CONCURRENT

Spec:

“VK_SHARING_MODE_ CONCURRENT specifies that concurrent access to any range or image
subresource of the object from multiple queue families is supported.”

AMDZ1

VK SHARING MODE CONCURRENT

Spec:

“VK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image
subresource of the object from multiple queue families is supported.”

With VK_SHARING_MODE_CONCURRENT DCC is disabled

AMDZ1

VK SHARING MODE CONCURRENT

Spec:

“VK_SHARING_MODE_CONCURRENT specifies that concurrent access to any range or image
subresource of the object from multiple queue families is supported.”

With VK_SHARING_MODE_CONCURRENT DCC is disabled

5 VULKANISED | 2019 AMDH

VK SHARING MODE CONCURRENT

Quick side note on async compute ©

Improved performance of up to ~10%

5 VULKANISED | 2019 AMDH

VK SHARING MODE CONCURRENT

Quick side note on async compute ©

Improved performance of up to ~10%

What about DCC?

5 VULKANISED | 2019 AMDH

VK SHARING MODE CONCURRENT

How to go back to VK_SHARING _MODE_EXCLUSIVE to get DCC enabled?
-> Obviously, if a resource is accessed only by one queue, just switch back to EXCLUSIVE

But what about resources, which are accessed by several queue families?
-> transfer queue family ownership

AMDZ1

TRANSFER QUEUE FAMILY OWNERSHIP

Done in 2 steps
Release the exclusive ownership from the source queue family
Acquire the exclusive ownership for the destination queue family

AMDZ1

TRANSFER QUEUE FAMILY OWNERSHIP

Done in 2 steps
Release the exclusive ownership from the source queue family
Acquire the exclusive ownership for the destination queue family

Example:
Queue family 0 holds currently the exclusive ownership of image A
Queue family 1 wants to acquire exclusive ownership of image A

AMDZ1

RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier 1mageMemoryBarrier = {};
imageMemoryBarrier.sType = VK STRUCTURE TYPE IMAGE MEMORY BARRIER;
imageMemoryBarrier.srcAccessMask = ..
imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA;
imageMemoryBarrier.newlLayout = newLayoutImageA;
imageMemoryBarrier.srcQueueFamilyIndex = O;
imageMemoryBarrier.dstQueueFamilyIndex = 1;
imageMemoryBarrier.image = 1imagea;

imageMemoryBarrier .subresourceRange = subresourceRangelmageA;
vkCmdPipelineBarrier (cmdBuf, ..);

vkQueueSubmit (queueFamily0,.., submitInfo, ..);

63 | VULKANISED| 2019 AMDH

RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier imageMemoryBarrier = {};

imageMemoryBarrier.sType = VK STRUCTURE TYPE IMAGE MEMORY BARRIER;

imageMemoryBarrier.srcAccessMask = ..

imageMemoryBarrier.dstAccessMask = 0;

imageMemoryBarrier.oldLayout = oldLayoutImageA;

imageMemoryBarrier.newlLayout = newLayoutImageA;

imageMemoryBarrier.srcQueueFamilyIndex = 0;

imageMemoryBarrier.dstQueueFamilyIndex = 1;

imageMemoryBarrier.image = 1imagea;

imageMemoryBarrier .subresourceRange = subresourceRangelmageA;
o Associated to a commandPool

vkCmdPipelineBarrier (cmdBuf, ..);

vkQueueSubmit (queueFamily0,.., submitInfo, ..);

64 | VULKANISED| 2019

AMD

RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier 1mageMemoryBarrier = {};
imageMemoryBarrier.sType = VK STRUCTURE TYPE IMAGE MEMORY BARRIER;

imageMemoryBarrier.srcAccessMask = ..

imageMemoryBarrier.dstAccessMask = 0;
imageMemoryBarrier.oldLayout = oldLayoutImageA;
imageMemoryBarrier.newlLayout = newLayoutImageA;
imageMemoryBarrier.srcQueueFamilyIndex = 0;
imageMemoryBarrier.dstQueueFamilyIndex = 1;
imageMemoryBarrier.image = 1imagea;
imageMemoryBarrier .subresourceRange = subresourceRangelmageA;
o Associated to a commandPool m Associated to queue family O
vkCmdPipelineBarrier (cmdBuf, ..);
vkQueueSubmit (queueFamily0,.., submitInfo, ..);

65 | VULKANISED| 2019 AMDH

RELEASE THE EXCLUSIVE OWNERSHIP

VkImageMemoryBarrier 1mageMemoryBarrier = {};
imageMemoryBarrier.sType = VK STRUCTURE TYPE IMAGE MEMORY BARRIER;

imageMemoryBarrier.srcAccessMask = ..

imageMemoryBarrier.dstAccessMask = 0;
imageMemoryBarrier.oldLayout = oldLayoutImageA;
imageMemoryBarrier.newlLayout = newLayoutImageA;
imageMemoryBarrier.srcQueueFamilyIndex = 0;
imageMemoryBarrier.dstQueueFamilyIndex = 1;
imageMemoryBarrier.image = 1imagea;

imageMemoryBarrier .subresourceRange = subresourceRangelmageA;

vkCmdPipelineBarrier (cmdBuf, ..);

vkQueueSubmit (queueFamilyO, .., SubmitInfo, ..); — Semaphore to Sync across gueues

66 | VULKANISED| 2019 AMDH

ACQUIRE TtHE ExcLUSIVE OWNERSHIP

VkImageMemoryBarrier 1mageMemoryBarrier = {};
imageMemoryBarrier.sType = VK STRUCTURE TYPE IMAGE MEMORY BARRIER;
imageMemoryBarrier.srcAccessMask = 0;

imageMemoryBarrier.dstAccessMask = .
imageMemoryBarrier.oldLayout = oldLayoutImageA;
imageMemoryBarrier.newlLayout = newLayoutImageA;
imageMemoryBarrier.srcQueueFamilyIndex = 0;
imageMemoryBarrier.dstQueueFamilyIndex = 1;
imageMemoryBarrier.image = 1imagea;

imageMemoryBarrier .subresourceRange = subresourceRangelmageA;

o Associated to a commandPool m Associated to queue family 1
vkCmdPipelineBarrier (cmdBuf, ..);

vkQueueSubmit (queueFamilyl, .., submitInfo, ..);

67 | VULKANISED| 2019 AMDH

68

LET‘S CHECK AGAIN ©

Use Radeon GPU Profiler (RGP):

Name

Color RT #0

I Color RT #1
B Color RT #2

Color RT #3

VULKANISED |

2019

Format
VK_FORMAT R8G8B8A8_SRGB
VK_FORMAT_A2R10G10B10_UNORM_PACK32
VK_FORMAT R8G8BBA8_UNORM

VK_FORMAT_R8G8B8BA8_UNORM

Width
1920
1920
1920
1920

Height

1080

1080

1080

1080

File View Help

Frame summary
Barriers

Most expensive events
Context rolls
Render/depth targets
Pipelines

Device configuration

Size in memory Draw calls
8 MB 1917
8 MB 1596
8 MB 1913
8 MB 1914

OVERVIEW

v ! Color pass #1
0.000 ms 2.000 ms
‘III\HIII‘IIIIH\I\‘\IIIIIII\‘HIIIII
Color

Color RT #3

Compression Pixel wavefront ratio Sample count

ON N 202% 1

ON I 202 1
I 202% 1
I 202% 1

Out of order draw calls
0/ 1917
0/ 159
0/1913
0/ 1914

Duration
1.853 ms
1.468 ms
1.617 ms

1.722 ms

AMDZ1

LET‘S CHECK AGAIN ©

File View Help

Use Radeon GPU Profiler (RGP): < OVERVIEW

Frame summary

Barriers " ! Color pass #1

Most expensive events 0.000 ms 2.000 ms

Context rolls v o
Color

Render/depth targets

Pipelines
Color RT #3

peviee configuration ColorRT#2

Name Format Width Height Size in memory Draw calls Compression Pixel wavefront ratio Sample count Out of order draw calls Duration

Color RT #0 VK_FORMAT_R8G8BSAS_SRGB 1920 1080 8 MB 1917 ON I 202% 1 0/ 1917 1.853 ms
[Color RT #1 VK_FORMAT_A2R10G10B10_UNORM_PACK32 1920 1080 8 MB 1596 ON I 202% 1 0/ 159 1.468 ms
B Color RT #2 VK_FORMAT_R8G8B8A8_UNORM 1920 1080 8 MB 1913 I 202% 1 0/ 1913 1.617 ms

Color RT #3 VK_FORMAT_R8G8BSAS_UNORM 1920 1080 8 MB 1914 S 202% 1 0/ 1914 1.722 ms

69 | VULKANISED| 2019 AMDH

70

LET‘S CHECK AGAIN ©

File View Help

<

Use Radeon GPU Profiler (RGP):

The performance increased about
~5-10%, depending on AMD graphics
card

Name Format Width

Color RT #0 VK_FORMAT R8G8B8A8_SRGB 1920
[Color RT #1 VK_FORMAT_A2R10G10B10_UNORM_PACK32 1920
B Color RT #2 VK_FORMAT R8G8BBA8_UNORM 1920

Color RT #3 VK_FORMAT R8G8BBA8_UNORM 1920

| VULKANISED | 2019

Height
1080
1080
1080
1080

Frame summary
Barriers

Most expensive events
Context rolls
Render/depth targets
Pipelines

Device configuration

Size in memory Draw calls
8 MB 1917
8 MB 1596
8 MB 1913
8 MB 1914

OVERVIEW

0.000 ms

Color

Compression

ON

ON

Color pass #1
2.000 ms

Color RT #3

Pixel wavefront ratio
I 202%
I 202%
I 202%
I 202%

Sample count
1
1
1

Out of order draw calls
0/ 1917
0/ 159
0/1913
0/ 1914

Duration
1.853 ms
1.468 ms
1.617 ms

1.722 ms

AMDZ1

71

LET‘S CHECK AGAIN ©

File View Help

<

Use Radeon GPU Profiler (RGP):

The performance increased about

~5-10%, depending on AMD graphics

card

Name

Color RT #0
[Color RT #1
B Color RT #2

Color RT #3

| VULKANISED | 2019

Format
VK_FORMAT R8G8B8A8_SRGB
VK_FORMAT_A2R10G10B10_UNORM_PACK32
VK_FORMAT R8G8BBA8_UNORM

VK_FORMAT_R8G8B8BA8_UNORM

Width
1920
1920
1920
1920

Height
1080
1080
1080
1080

Frame summary
Barriers

Most expensive events
Context rolls
Render/depth targets
Pipelines

Device configuration

Size in memory Draw calls
8 MB 1917
8 MB 1596
8 MB 1913
8 MB 1914

OVERVIEW

v ! Color pass #1
0.000 ms 2.000 ms
‘III\HIII‘IIIIH\I\‘\IIIIIII\‘HIIIII
Color

Color RT #3

“m= What about this one?

ON I 202% 1
OFF I 202% 1
ON I 202% 1

Out of order draw calls
0/ 1917
0/ 159
0/1913
0/ 1914

Duration
1.853 ms
1.468 ms
1.617 ms

1.722 ms

AMDZ1

AND ONCE AGAIN ...

Color RT #2 — G-buffer resource #2

v Createlnfo

sType

? pNext
flags
imageType
format

> extent
mipLevels
arraylLayers
samples
tiling
usage
sharingMode
queueFamilylndexCount
pQueueFamilyindices

initialLayout

VkimageCreatelnfo()
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO
VklmageFormatListCreatelnfokKHR() V
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT
VK_IMAGE_TYPE_2D

VK_FORMAT R8G8B8A8 UNORM V
VkExtent3D()

1

1

VK_SAMPLE_COUNT_1_BIT
VK_IMAGE_TILING_OPTIMAL

VK_IMAGE_USAGE_TRANSFER _SRC BIT | VK_IMAGE_USAGE TRANSFER _DST BIT | VK_IMAGE_USAGE_SAMPLED BIT | VK_IMAGE_USAGE _STORAGE BIT | VK_IMAGE_USAGE_COLOR ATTACHMENT BIT

VK_SHARING_MODE _EXCLUSIVE V
0

uint32_t[]
VK_IMAGE_LAYOUT_UNDEFINED

AMDZ1

AND ONCE AGAIN ...

Color RT #2 — G-buffer resource #2

v Createlnfo

sType

? pNext
flags
imageType
format

> extent
mipLevels
arraylLayers
samples
tiling
usage
sharingMode
queueFamilylndexCount
pQueueFamilyindices

initialLayout

VkimageCreatelnfo()
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO
VklmageFormatListCreatelnfokKHR() V
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT
VK_IMAGE_TYPE_2D

VK_FORMAT R8G8B8A8 UNORM V
VkExtent3D()

1

1

VK_SAMPLE_COUNT_1_BIT
VK_IMAGE_TILING_OPTIMAL

VK_IMAGE_USAGE_TRANSFER _SRC BIT | VK_IMAGE_USAGE TRANSFER DST BIT | VK_IMAGE_USAGE SAMPLED BIT IVK?IMAGE?USAGE?STORAGE?BITI VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT

VK_SHARING_MODE _EXCLUSIVE V
0

uint32_t[]
VK_IMAGE_LAYOUT_UNDEFINED

AMDZ1

Color RT #2 — G-buffer resource #2

wv Createlnfo

sType

? pNext

flags

imageType

format

extent

mipLevels
arraylLayers

samples

tiling

usage

sharingMode
queueFamilylndexCount
pQueueFamilyindices

initialLayout

| VULKANISED | 2019

USAGE FLAGS

Post process moved to the compute queue
due to async compute

VkimageCreatelnfo()
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO
VklmageFormatListCreatelnfokKHR() V
VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT
VK_IMAGE_TYPE_2D

VK_FORMAT R8G8B8A8 UNORM V
VkExtent3D()

1

1

VK_SAMPLE_COUNT_1_BIT
VK_IMAGE_TILING_OPTIMAL

VK _IMAGE_USAGE TRANSFER SRC BIT | VK_IMAGE_USAGE TRANSFER DST BIT | VK IMAGE _USAGE _SAMPLED BIT IVK?IMAGE?USAGE?STORAGE?BITI VK_IMAGE_USAGE_COLOR_ATTACHMENT BIT
VK_SHARING_MODE _EXCLUSIVE V
0

uint32_t[]
VK_IMAGE_LAYOUT_UNDEFINED

-> VK _IMAGE_USAGE_STORAGE_BIT
IS now required for G-buffer resource #2

AMDZ1

USAGE FLAGS

Color RT #2 — G-buffer resource #2 Post Process moved to the Compute gqueue
due to async compute
wv Createlnfo VkimageCreatelnfo()
sType VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO

> pNext VklmageFormatListCreatelnfokKHR() V -> VK_I MAG E_U SAG E_STO RAG E_B IT

i”njj;ewe e e is now required for G-buffer resource #2
format VK_FORMAT_R8G8B8A8_UNORM V q
Y extent VkExtent3D() \e\\l :
mipLevels 1 @
arraylLayers 1
samples VK_SAMPLE_COUNT_1_BIT
tiling VK_IMAGE_TILING_OPTIMAL
usage VK_IMAGE_USAGE_TRANSFER _SRC BIT | VK_IMAGE_USAGE TRANSFER DST BIT | VK_IMAGE_USAGE SAMPLED BIT IVKJMAGEfUSAGEfSTORAGEfBlTI VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT
sharingMode VK_SHARING_MODE_EXCLUSIVE V

queueFamilylndexCount | 0
pQueueFamilyindices uint32_t[]
initialLayout VK_IMAGE_LAYOUT_UNDEFINED

75 | VULKANISED| 2019 AMDH

VK IMAGE USAGE STORAGE BIT

Spec:

VK _IMAGE_USAGE_STORAGE_BIT specifies that the image can be used to create a VkimageView
suitable for occupying a VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_STORAGE IMAGE “

Spec:

, A storage image (VK_DESCRIPTOR_TYPE_ STORAGE_IMAGE) is a descriptor type associated
with an image resource via an image view that load, store, and atomic operations can be performed

on.

76 | VULKANISED| 2019 AMDH

VK IMAGE USAGE STORAGE BIT

Spec:

VK _IMAGE_USAGE_STORAGE_BIT specifies that the image can be used to create a VkimageView
suitable for occupying a VkDescriptorSet slot of type VK_DESCRIPTOR_TYPE_STORAGE IMAGE “

Spec:

, A storage image (VK_DESCRIPTOR_TYPE_ STORAGE_IMAGE) is a descriptor type associated
with an image resource via an image view that load, store, and atomic operations can be performed

on.

Color attachment: Storage image:

Fragment shader --> Compute shader
G-buffer resource #2 G-buffer resource #2

77 | VULKANISED| 2019 AMDH

USAGE FLAGS

Usage flags influencing DCC:

VK _IMAGE_USAGE_STORAGE_BIT —disables DCC
VK _IMAGE_USAGE_SAMPLED_BIT — makes DCC less efficient

78 | VULKANISED| 2019 AMDH

USAGE FLAGS

Usage flags influencing DCC:

VK _IMAGE_USAGE_STORAGE_BIT —disables DCC
VK _IMAGE_USAGE_SAMPLED_BIT — makes DCC less efficient

Always use what you need, but not more @

79 | VULKANISED| 2019 AMDH

SUMMARY

VK _IMAGE_CREATE_MUTABLE_FORMAT BIT
use VK_KHR_Image format_list

VK_SHARING_MODE_EXCLUSIVE
don‘t use sharing mode concurrent in production ready code
use SHARING _MODE_EXCLUSIVE and transfer queue family ownership when required

USAGE FLAGS
set all the usage flags you need, but not more

AMDZ1

80 | VULKANISED| 2019

OTHER NIT-PICKS CONCERNING DCC

Decompression
During transfer operations
General layout

Depth targets
Compressed differently

Above guidelines don‘t apply here

There is no rule without expection
There might be some tweaks in the driver for specific cards

AMDZ1

OTHER NIT-PICKS CONCERNING DCC

Decompression
During transfer operations

General layout
Depth targets
Compressed differently pr— E’"

Above guidelines don‘t apply here

There is no rule without expection
There might be some tweaks in the driver for specific cards

2222222222222222 AMDZ

SYNCHRONIZATION

Barriers
Placing
Batching
Pipeline stage masks

Cross queue synchronization

83 | VULKANISED| 2019 AMDZA

BARRIERS

Experience with barriers in this particular game
Most of the issues likely have their roots in the original engine structure, which is DX11-based

84 | VULKANISED| 2019 AMDH

BARRIERS

Experience with barriers in this particular game
Most of the issues likely have their roots in the original engine structure, which is DX11-based

-> Rearranging barriers to get more overlap between the drawcalls / passes
-> Batching barriers to save some additional time

85 | VULKANISED| 2019 AMDH

BARRIERS

Experience with barriers in this particular game
Most of the issues likely have their roots in the original engine structure, which is DX11 based

-> Rearranging barriers to get more overlap between the drawcalls / passes
-> Batching barriers to save some additional time

Other findings
-> Where specifying barriers as precise as possible really pays of

86 | VULKANISED| 2019 AMDH

BARRIERS — ORIGINAL SETUP

The rendering work is logically organized in components — e.g. one shadow map component,
one lighting component etc.

AMDZ1

BARRIERS — ORIGINAL SETUP

The rendering work is logically organized in components — e.g. one shadow map component,

one lighting component etc.

A

Constants A

B

Constants B

C

D

Constants C

Constants D

AMDZ1

BARRIERS — ORIGINAL SETUP

« Constants information is gathered on the CPU side in the beginning of each frame
« Constants A, B and C are equal, constants D are different

« Component Ais independent from Component B
« Component C depends on Component A and B

« Component D depends on Component C

B

A

Constants B

Constants A

D

C

Constants D

Constants C

AMDZ1

BARRIERS — ORIGINAL SETUP

« Constants information is gathered on the CPU side in the beginning of each frame
« Constants A, B and C are equal, constants D are different

« Component Ais independent from Component B
« Component C depends on Component A and B

« Component D depends on Component C

B

A

Constants B

Constants A

D

C

Constants D

Constants C

AMDZ1

BARRIERS — ORIGINAL SETUP

« Constants information is gathered on the CPU side in the beginning of each frame
« Constants A, B and C are equal, constants D are different
« Component Ais independent from Component B

« Component C depends on Component A and B

« Component D depends on Component C

Barrier — Update constants A —{ Barrier A » Barrier — Update constants B —{ Barrier >
» Barrier — Barrier — Update constants C —* Barrier — C
> Barrier —{ Barrier —{ Update constants D [~ Barrier — D

AMDZ1

BARRIERS — OPTIMIZED

« Constants information is gathered on the CPU side in the beginning of each frame
« Constants A, B and C are equal, constants D are different

« Component Ais independent from Component B

« Component C depends on Component A and B

« Component D depends on Component C

Barrier — Update constants A —{ Barrier — Barrier — Update constants B — Barrier
» Barrier — Update constants C —{ Barrier — Barrier — Update constants D —| Barrier
» A > B > Barrier " C » Barrier » D

AMDZ1

BARRIERS — OPTIMIZED

Component D depends on Component C

Constants information is gathered on the CPU side in the beginning of each frame
Constants A, B and C are equal, constants D are different
Component A is independent from Component B
Component C depends on Component A and B

A 4

Barrier — Update constants A —{ Barrier —| Barrier — Update constants B — Barrier
> Barrier — Update constants C — Barrier (— Barrier = Update constants D | Barrier
){ Barrier » C » Barrier — D

AMDZ1

BARRIERS — OPTIMIZED

Barrier

Y

Update constants A

A 4

Barrier

Barrier

A 4

Update constants B

>

Barrier

A\ 4

Barrier

—

Update constants C

)

Barrier

>

Barrier

Constants information is gathered on the CPU side in the beginning of each frame
Constants A, B and C are equal, constants D are different
Component A is independent from Component B
Component C depends on Component A and B
Component D depends on Component C

Barrier

—

Update constants D

)

Barrier

y

Barrier

AMDZ1

BARRIERS — OPTIMIZED

« Constants information is gathered on the CPU side in the beginning of each frame
« Constants A, B and C are equal, constants D are different
« Component Ais independent from Component B
« Component C depends on Component A and B

« Component D depends on Component C

Barrier

\ 4

Update constants Z

A

Barrier

<

>é{ Barrier

Barrier

A\ 4

Update constants D

|

Barrier

y

Barrier

95 | VULKANISED| 2019

AMDZ1

BARRIERS — OPTIMIZED

This is what we ended up with — but it already had observable changes

A 4

Barrier — Update constants A —{ Barrier —| Barrier — Update constants B — Barrier
> Barrier — Update constants C — Barrier (— Barrier = Update constants D | Barrier
){ Barrier » C » Barrier — D

AMDZ1

BARRIERS — OPTIMIZED

1.000 ms 2.000 ms 1.000 ms 2.C
|||‘||||||\II‘II\IIIII\‘IIII\IIII‘\IIIIII\I‘ ||||‘|||||||||‘|||||||||‘||||||||| |
[] o NP D[] e ~15%

[] IR I EIE | s i Color RT #3
[] IR AN . i

O T O . [] Color RT #2
B I O A Pl

97 | VULKANISED| 2019 AMDA\

BARRIERS — OPTIMIZED

Jms 1.000 ms 2.000 ms
I0 ms 1.000 ms 2.C
||||H‘\||\|H|||HI\||\I\\IIIIHI\‘I\I\II\I\\ ‘
s IIHIII\HIIIHH\III\HII‘HHIIHH
|| ~15%
i
| '
T ll | |
1T I | i it 0 ARG
[i i I |l ||
1 ..l FrEm -
ol Mo, kL
_Il I IIII in

9999999999999999 AMDA

BARRIER BATCHING

Early builds had several consecutive barriers:

167 vkCmdDispatch(25...

0.001 ms
0.002 ms
0.001 ms
0.001 ms
0.002 ms
0.001 ms
0.002 ms
0.001 ms
0.001 ms
0.001 ms
0.001 ms

AMDZ1

BARRIER BATCHING

Early builds had several consecutive barriers:

0.001 ms
0.002 ms
i f 0.001 ms
lir [0.001 ms
i\
I

167 vkCmdDispatch(25...

0.002 ms

I - 0.001 ms

in er 0.002 ms
0.001 ms
0.001 ms
0.001 ms
0.001 ms

100 | VULKANISED | 2019

void vkCmdPipelineBarrier (
VkCommandBuffer
VkPipelineStageFlags
VkPipelineStageFlags
VkDependencyFlags

uint32 t

const VkMemoryBarrier*
uint32 t

const VkBufferMemoryBarrier¥*
uint32 t

const VkImageMemoryBarrier¥*

commandBuffer,
srcStageMask,
dstStageMask,
dependencyFlags,
memoryBarrierCount,
pMemoryBarriers,
bufferMemoryBarrierCount,
pBufferMemoryBarriers,
imageMemoryBarrierCount,
pImageMemoryBarriers) ;

AMDZ1

BARRIER BATCHING

void vkCmdPipelineBarrier (
Early builds had several consecutive barriers: | VkcommandButfer commandButter,
VkPipelineStageFlags srcStageMask,
167 vkCmdDispatch(25... 0001 ms VkPipelineStageFlags dstStageMask,
mdPipelineBarrier() e VkDependencyFlags dependencyFlags,
171 Aamcprianert prirn uint32 t memoryBarrierCount,
o sl jeiniin const VkMemoryBarrier* pMemoryBarriers,
e uint32 t bufferMemoryBarrierCount,
e const VkBufferMemoryBarrier* pBufferMemoryBarriers,
) uint32 t imageMemoryBarrierCount,
Example: 2 image Iayout transitions const VkImageMemoryBarrier¥* pImageMemoryBarriers) ;

vkCmdPipelineBarrier (.., 0, NULL, O, NULL, 1, &imageBarrierA)
vkCmdPipelineBarrier (.., 0, NULL, 0, NULL, 1, &imageBarrierB)

e

e

101 | VULKANISED | 2019 AMDH

BARRIER BATCHING

void vkCmdPipelineBarrier (
Early builds had several consecutive barriers: | VkcommandButfer commandButter,
VkPipelineStageFlags srcStageMask,
167 vkCmdDispatch(25... 0001 ms VkPipelineStageFlags dstStageMask,
mdPipelineBarrier() e VkDependencyFlags dependencyFlags,
171 Aamcprianert prirn uint32 t memoryBarrierCount,
o sl jeiniin const VkMemoryBarrier* pMemoryBarriers,
e uint32 t bufferMemoryBarrierCount,
e const VkBufferMemoryBarrier* pBufferMemoryBarriers,
) uint32 t imageMemoryBarrierCount,
Example: 2 image Iayout transitions const VkImageMemoryBarrier¥* pImageMemoryBarriers) ;

~oe

vkCmdPipelineBarrier(.., 0, NULL, O, NULL, 1, &imageBarrierA)
vkCmdPipelineBarrier(.., 0, NULL, O, NULL, 1, &imageBarrierB)
->

~oe

VkImageMemoryBarrier [2] 1mageBarriers = {1mageBarrierA, 1imageBarrierB};
vkCmdPipelineBarrier(.., 0, NULL, 0, NULL, 2, &imageBarriers);

102 | VULKANISED | 2019 AMDH

PIPELINE STAGE MASKS

Top

Draw Indirect

Top

Vertex Input

Draw Indirect

Vertex Shader

Vertex Input

Vertex Shader

Fragment Shader

Fragment Shader

Transfer

Compute Shader

Transfer

Bottom

Compute Shader

103 | VULKANISED| 2019

Bottom

AMDZ1

PIPELINE STAGE MASKS

Top

Draw Indirect

Top

Vertex Input

Draw Indirect

Vertex Shader

Vertex Input

Vertex Shader

Fragment Shader

Fragment Shader

Transfer

Compute Shader

Transfer

Bottom

Compute Shader

104 | VULKANISED | 2019

Bottom

ALL_COMMANDS_BIT

Spec:

“VK_PIPELINE_STAGE_ALL COMMANDS BIT is
equivalent to the logical OR of every other pipeline
stage flag that is supported on the queue it is used
with.”

AMDZ1

ALL _COMMANDS BIT - COMPUTE PIPELINE

ALL_COMMANDS_BIT

Top
Draw Indirect Spec:
Vertex Input “VK_PIPELINE_STAGE_ALL COMMANDS BIT is

equivalent to the logical OR of every other pipeline

Vertex Shader stage flag that is supported on the queue it is used

with.”

Fragment Shader

Transfer

Compute Shader

Bottom

11111111111111111 AMDZ

ALL _COMMANDS BIT - COMPUTE PIPELINE

Top

Draw Indirect

Vertex Input

Vertex Shader

Fragment Shader

Transfer

Compute Shader

Bottom

106 | VULKANISED | 2019

ALL_COMMANDS_BIT

Spec:

“VK_PIPELINE_STAGE_ALL COMMANDS BIT is
equivalent to the logical OR of every other pipeline
stage flag that is supported on the queue it is used
with.”

The bottom bit adds a wait on end of pipe + timestamp
-> can take up to ~64k cycles on the async queue ®

AMDZ1

ALL _COMMANDS BIT - COMPUTE PIPELINE

Top

Draw Indirect

Vertex Input

Vertex Shader

Fragment Shader

Transfer

Compute Shader

Bottom

107 | VULKANISED | 2019

ALL_COMMANDS_BIT

Spec:

“VK_PIPELINE_STAGE_ALL COMMANDS BIT is
equivalent to the logical OR of every other pipeline

stage flag that is supported on the queue it is used
with.”

Use the specific pipeline stage mask instead of all_ commands, e.g.:

-> VK_PIPELINE_STAGE COMPUTE_SHADER BIT |
VK_PIPELINE_STAGE TRANSFER BIT

The bottom bit adds a wait on end of pipe + timestamp
-> can take up to ~64k cycles on the async queue ®

AMDZ1

ALL _COMMANDS BIT - COMPUTE PIPELINE

Start time 11.262 ms

End time 11.306 ms

Duration

Hardware context 0

Frontend

Synchronization

Caches N VK_PIPELINE_STAGE_ALL COMMANDS BIT
Invalidated Eam on async Compute gqueue
Flushed None

Barrier type (APP

Layout transitions

None

11111111111111111 AMDZ

ALL _COMMANDS BIT - COMPUTE PIPELINE

Start tim 10.183 ms

End tim 10.186 ms

Duration

Hardw ontext 0

Frontend

Synchronization D

Caches N VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT |
Invalidated (K JL1] VK_PIPELINE_STAGE_TRANSFER_BIT

Flushed None on async compute queue

Barrier type (APP

Layout transitions
None

11111111111111111 AMDZ

CROSS QUEUE SYNCHRONIZATION

The engine used to have ~7 command buffers per frame

[531201] VkCommandBuffer
[25658] VkCommandBuffer [531201] VkCommandBuffer
[25656] VkCommandBuffer [25658] VkCommandBuffer [531201] VkCommandBuffer
[530689] VkCommandBuffer [25656] VkCommandBuffer [25658] VkCommandBuffer [531201;] VkCommandBuffer
¢ [530177] VkCommandBuffer [530689] VkCommandBuffer [25656] VkCommandBuffer MM
K [529665) VkCommandBuffer [530177] VkCommandBuffer [530689] VkCommandBuffer [25656] VkCommandBuffer [5)
i b SO i b isiisuin /Ol i i]

110 VULKANISED | 2019 AMDH

CROSS QUEUE SYNCHRONIZATION

The engine used to have ~7 command buffers per frame

[25658] VkCommandBuffer [531201] VkCommandBuffer

[25656] VkCommandBuffer [25658] VkCommandBuffer [531201:] VkCommandBuffer I
[530689] VkCommandBuffer [25656] VkCommandBuffer [25658] VkCommandBuffer
[530177] VkCommandBuffer [530689] VkCommandBuffer [25656] VkCommandBuffer [5]

3
19
B [699393] VkCommandBuffer
6 [701185) VkCommandBuffer
3 [698881] VkCommandBuffer

er [699649] VkCommandBuffer

[705537] VkCommandBuffer
[708097] VkCommandBuffer [7 [707329] VkCommandBuffer 7o
[24602] VkCommandBuffer [7¢ [705025] VkCommandBuffer 7o
[24600] VkCommandBuffer (VKQUi€ [7C [706817) VkCommandBuffer 7o
[708609] VkCommandBuffer (7080 [704513] VkCommandBuffer 7o
[708353] VkCommandBuffer [2460z 7o
[704001] VCx dBL [706049] VKC dBuffer [2460C [2¢ [708097] VkCommandBuffer e
[703233] VKC: dB\. [704001] VKC dBuffer [7086¢ [2¢ [24602] VkCommandBuffer o]
[708865] VkCommandBuff [703233] VkCommandBuffer [7083¢ [7¢ [24600] VkCommandBuffer [24¢
[699393] VkCommandBuffer [708865] VkCommandBuffer [70604 [7C [708609] VkCommandBuffer 2
[701185] VkCommandBuffer [699393] VkCommandBuffer [7040C [7C [708353] VkCommandBuffer [70¢

[705793] VkCommandBuffer

[706305] VkCommandBuffer [704769] VkCommandBuffer 7

[704257) VkCommandBuffer [706305) VkCommandBuffer {7 [705793] VkCommandBd
[704257] VkCommandBuffer [7 [704769] VkCommandBd

111 | VULKANISED | 2019

AMDZ1

CROSS QUEUE SYNCHRONIZATION

Cross gueue synchronization is only possible at submission boundaries

[Ox14ec22cBe10] VkSemaphoreWait

|- [71 [706817] VkCommandBuffer

[0x14ef7796ab0] VkSemaphoreWait

[0x14ec22c9820] VkSemaphoreWait

112 | VULKANISED| 2019 AMDZA

SUMMARY

Check your barriers if you can rearrange them
Batch consecutive barriers to a single barrier
Specify your barriers as precise as possible

Cross queue synchronization is only possible at submission boundaries

113 | VULKANISED | 2019 AMDH

OTHER SMALL THINGS

Copy gqueue
Compute queue & the swapchain
Shader building infrastructure

11111111111111111 AMDZXU

COPY QUEUE

Resource was copied from GPU to CPU
Generated on GPU during previous frame
After the copy overwritten with updated data from current frame

0 ms 2.600 ms
ThlS COpy blocked the Wh0|e GPU ||||||‘|||||||||‘||\||||||‘|||||||||
-> ~1-2% of frame time i
| I
vkCmdCopyImage() | 0.199 ms oo oo, T

115 | VULKANISED | 2019 AMDH

COPY QUEUE

By using the copy queue, we won the time previously spend for vkCmdCopylmage() back.

116 | VULKANISED| 2019 AMDA\

COMPUTE QUEUE & SWAPCHAIN

Write directly from compute to the swapchain

1111111111111111111 AMDA

COMPUTE QUEUE & SWAPCHAIN

Write directly from compute to the swapchain 2875 vkCmdDraw(3, 1, 0, 0) 0.041 ms |

9.250 ms 9.300 ms 9.350 ms

VULKANISED | 2019

AMDZ1

COMPUTE QUEUE & SWAPCHAIN

Write directly from compute to the swapchain

Possibly present from compute

Vulkan specific feature

119 VULKANISED | 2019 AMDH

SHADER BUILDING INFRASTRUCTURE

HLSL

DXC

1 SPIR-V

AMDZ1

SUMMARY

Check for compression, especially for the G-buffer render targets
Take special care of the barriers ©

Can you make good use of the copy queue?

The compute queue can write directly to the swapchain

Use the DXC compiler

121 | VULKANISED | 2019 AMDH

THANKS TO

Dominik Baumeister
Matthaus Chajdas
Tobias Hector
Adam Sawicki

Rys Sommefeldt
Steven Tovey
Marco Weber

AMDZ1

REFERENCES

https://www.khronos.org/reqistry/vulkan/specs/1.1-extensions/html/

https://gpuopen.com/dcc-overview/

https://gpuopen.com/vulkan-barriers-explained/

https://github.com/GPUOpen-
LibrariesAndSDKs/VVulkanMemoryAllocator

https://gpuopen.com/reducing-vulkan-api-call-overhead/

123 | VULKANISED| 2019 AMDZA

https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/
https://gpuopen.com/dcc-overview/
https://gpuopen.com/vulkan-barriers-explained/
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://gpuopen.com/reducing-vulkan-api-call-overhead/

W RS TR
: 11 .., . ..v.,\.r .,. v)

Bt

Q&A

DA lou.kramer@amd.com

@Ilou_auroyup

https://gpuopen.com/

AMDZ1

124 | VULKANISED| 2019

mailto:lou.kramer@amd.com
https://gpuopen.com/

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard
version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no
obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without
obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY
APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT,

INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

ATTRIBUTION

© 2019 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other
jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

125 | VULKANISED | 2019 AMDH

AMD

