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AGENDA

* Types of memory

 Acasestudy

 Resizable BAR, Smart Access Memory
* Performance tips

 Summary

Talking about desktop PC only.

It will be low level...
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TYPES OF MEMORY

: _ VB, IB, CBV, SRV
Physically: RT, DS, UAV, ...
. aka “local”, “framebuffer”,
m GPU < > Video RAM (VRAM) MEMORY_POOL._L1| DEVICE_LOCAL
PN
Copy... — PCle®
A 4

ka “ te”,
[:] CPU < > System RAM (SysRAM) EA(EMBES:{F?OOL_ Lo
void™* mappedPtr; l

* Direct3D® 12 | Vulkan®
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TYPES OF MEMORY

Logically:
'm CPU < > D3D12_HEAP_TYPE_DEFAULT
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
* UPLOAD * READBACK
CPU < > *_HOST_VISIBLE_BIT | *_HOST_VISIBLE_BIT |
* HOST_COHERENT_BIT | | * HOST_COHERENT BIT|

* HOST_CACHED_BIT

Direct3D® 12 | Vulkan®
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TYPES OF MEMORY

Logically:

'm CPU : > D3D12_HEAP_TYPE_DEFAULT
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

* Direct and fast access on GPU.
* No direct access from CPU.
D CPU * Good for resources that:
* GPU writes and reads frequently - render target, depth/stencil, UAV.
e CPU uploads once, GPU reads frequently - immutable vertex/index

buffers, textures.

Direct3D® 12 | Vulkan®

AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021




[Public]

TYPES OF MEMORY

Logically:

« Direct access on CPU (mapping), cached.
m GPU * Good for resources:
* Copied from or written directly by GPU, read by CPU.

(A less common case, will not discuss here.)

*_UPLOAD *_READBACK

D -y < > *_HOST_VISIBLE_BIT | * HOST_VISIBLE_BIT |
* HOST_COHERENT_BIT | | *_HOST_COHERENT_BIT |

* HOST_CACHED_BIT

Direct3D® 12 | Vulkan®
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TYPES OF MEMORY

Logically:
* Direct access on CPU (mapping), uncached, write-combined.
m E  Good for resources:
* Written by CPU, copied to GPU.
« Written by CPU, read directly by GPU.
* _UPLOAD * READBACK
D CPU < > *_HOST_VISIBLE_BIT | *_HOST_VISIBLE_BIT |
* _HOST_COHERENT_BIT * HOST_COHERENT_BIT |

*_HOST_CACHED_BIT

Direct3D® 12 | Vulkan®
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UPLOAD HEAP

Uncached & write-combined means:

Fast:

Slow:
€® Sequential writes & Scattered writes
» mappedPtr[i] = srcDatali; « mappedPtr[ indirect[i] ] = x;
é Copy toit &, Reads
« memcpy(mappedPtr, srcData, ...); * vy = mappedPtr[i];

& |ncl. implicit reads
« mappedPtr[i] += z;

Pro tip: Align start of your data to 64 B.
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WAYS TO UPLOAD DATA

Method 1. CPU writes to UPLOAD - GPU executes copy command - GPU reads from DEFAULT

'm CPU < * DEFAULT
* DEVICE_LOCAL BIT

VB, IB, CBV, SRV...

CopyResource
vkCmdCopyBuffer

* UPLOAD
D CPU > * HOST VISIBLE BIT |

* HOST_COHERENT_BIT

void* mappedPtr;
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WAYS TO UPLOAD DATA

Method 2. CPU writes to UPLOAD - GPU reads from UPLOAD

| o

VB, IB, CBV, SRV...

* UPLOAD
D CPU > * HOST VISIBLE BIT |

* HOST_COHERENT_BIT

void* mappedPtr;
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WAYS TO UPLOAD DATA

 Good for buffers.

« Textures|images better be in opaque GPU-specific
format to use optimized swizzling/compression:
'm CPU D3D12_TEXTURE_LAYOUT_UNKNOWN]|
VK_IMAGE_TILING_OPTIMAL - need to do buffer-
VB, IB, CBV, SRV... image copy

* UPLOAD
D CPU > * HOST VISIBLE BIT |

* HOST_COHERENT_BIT

void’gmappedPtr;
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BAR

Method 3. There is a 4th type of memory:

m GPU < Base Address Register (BAR)
aka “aperture”, “local-visible”

VB, IB, CBV, SRV...

void* mappedPtr;

]~ -
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BAR

Method 3. There is a 4th type of memory:

m GPU h Base Address Register (BAR)
aka “aperture”, “local-visible”

VB, IB, CBV, SRV...

e Residesin VRAM.
* Accessible directly for mapping on the CPU, uncached & write-combined

(like UPLOAD).
[:] CPU « Good for resources:

* Written by CPU, read by GPU frequently (“dynamic”).
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BAR

« VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|*_HOST_VISIBLE_BIT | *_ HOST_COHERENT_BIT
* Not always available - availability depends on GPU and driver.

* D3D12: not exposed as of today.
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A CASE STUDY

* A game using DXT1.
* Running on Radeon RX 6900 XT, 1920x1080 at 38 FPS. @&. & &,
 GPUView showed the game was CPU-bound in the renderer DLL.

Flip Queue [0] Hidden

S50 IR NN KN NN GEN N I CENN RN GEN G ENGED KN (1 RN 1 EKO CCINN CEN CKIN RN CENON EN EN X EN CEN E-q
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A CASE STUDY

 AMD pProf showed hotspots as 2 renderer functions that just read & write some pointer...

Pl AMDUProf - [C/Users/Adarn Saw...-26-2021_14-33-06.db]

ﬁ PROFILE SUMMARY ANALYZE SOURCES
CHWShader D3D::GetSPIBufferDatajunion _m128 * const, struct SRenditem *,int,int) x
) Filters
PID: W TID: TID[16088] ™ View timer-based profile W
A Address | Line | Assembly CPU TINE (5)

Bx7ff929a19265 add rsp,8eeealcsh
Bx7ff929a1926¢ pop rl3
Bx7ff929a1926e pop rdi
ax7ffoz29a1926f pop rsi
Bx7ff929a19270 pop rbp
Bx7 929319271 retng
ex7ff929a19272 mov rox,[@eeesealssdesbleh] exlsedasble
Bx7ff929a19279 mov [rsp+@eeaelcdh],rbx 4,33
Bx7TTo29a19281 add rox,@eeoed58h
@x7TT929a19288 cmp [@eeeeeel3@3sczbeh],rsi exlse3sczbe 2.29
Bx7ff929a1928F mov [rsp+eeeaelbsh],ri2
Bx7ff929a19297 mov [rsp+@eeselbeh],rid

ax7ff929a192a7 jnz eeeeeeelse@e92cah @xlseeedlca

Bx7f1929a192a9 wor r9d,r9d
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A CASE STUDY

 RenderDoc showed before every draw call they map a dynamic VB and CB...

1696 Drawlndexed(5922) 23./6
1704 DrawIndexed(5922) 28.32
1721 DrawlIndexed(5922) 24.64
1728 DrawIndexed(5922) 11.16
i;ig g;:ﬁ:g:i:ggggg %ggg Resource Initialisation Parameters
1755 DrawIndexed(5922) 6.48 fir;’%itfgevice [Value
DrawIndexed(5922) 22. 68
1772 | Drawlndexed(®922) 1030 pbesc ___D3DIL BUFFER DESCO |
1785 DrawlIndexedInstanced(5922, 3) 29 12 ByteWidth 256
1807 DrawlIndexedInstanced(2958, 12) 78.12 Usage D3D11_USAGE_DYNAMIC
1825 DrawIndexedInstanced(2958, 33) 39.64 BindFlags  D3D11_BIND_CONSTANT BUFFER
1847 DrawlIndexedInstanced(1479, 3) 36.12
1865 DrawIndexedInstanced(1479, 25) 40.64 CPUAcces... D3D1LCPU_ACCESS_WRITE
1880 DrawIndexed(1479) 18.92 MiscFlags 0
1895 DrawIndexedInstanced(1479, 25) 26.40 StructureB... 0
101N |t Toam A1 AT00N an 29 Y pIn.It.IalData NULL
API Inspector 2 pBuffer Buffer 26709+
> 1763 ID3D11DeviceContext::Map i::t:::g::m (22526 bytes)
> 1764 ID3D11DeviceContext::Map
> 1765 ID3D11DeviceContext::Unmap
> 1766 ID3D11DeviceContext::Unmap
>1/6/ 1D3D11DeviceContext::VS5etConstantBuffers
> 1768 ID3D11DeviceContext::VSSetConstantBuffers
> 1769 ID3D11DeviceContext::PSSetConstantBuffers
> 1770 ID3D11DeviceContext::PSSetConstantBuffers
> 1771 ID3D11DeviceContext::PSSetSamplers
> 1772 ID3D11DeviceContext::DrawlIndexed
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A CASE STUDY

* Did they read from a mapped pointer?
* Theydid! By accident...

ctx->Map(buf, 0, D3D11_MAP_WRITE_DISCARD, 0, &mapped);
Vector* pDst = (Vector*)mapped->pData;

pDst[0] = ...
pDst[1] = ...
(.0 {
stt[U] += ... o
stt[1] += ... —
}

ctx->Unmap(buf, 0);
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A CASE STUDY

Why so slow?
e This memory is uncached & write-combined - should be only written, never read.
* Microsoft® explicitly warns about it in the docs of ID3D11DeviceContext::Map.

e Qurdriver decided to put a dynamic DX11 buffer in BAR (VRAM) instead of SysRAM >
making this bad access pattern even slower. @, &,
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A CASE STUDY

The solution: alignas(64) Vector src[N];
src[0] = ...
src[1] = ...
if(...) {
src[0] += ...
src[1] += ...
}
ctx->Map(buf, 0, D3D11_MAP_WRITE_DISCARD, 0, &mapped);

memcpy(mapped->pData, src, N * sizeof(Vector));
ctx->Unmap(buf, 0);

Result: final game running at 4K at 80 FPS. ¢p
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REBAR & SAM

 Traditional BAR: fixed size 256 MB.
 Resizable BAR (ReBAR): makes entire VRAM CPU-visible.

* Smart Access Memory (SAM): AMD technology that utilizes ReBAR to boost performance in games

AMDQ
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SMART ACCESS MEMORY

How to ensure compatibility?
ReBAR is a low-level feature...

* Ensure compatible hardware: motherboard, CPU, GPU.
 E.g., Ryzen 5000 series processor, Radeon 6000 graphics card.

 Update motherboard BIOS.
* Use Windows® 10 with latest updates.
* Update graphics driver.
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SMART ACCESS MEMORY

How to enable?

Enter BIOS, enable: Advanced - PCl Subsystem Settings -
 Above 4K Decoding

* Re-Size BAR Support

S Wy#  Uer BIOS utility - Advanced Mode

# &
07/08/2021 1 7 B 1 70 | 52 english =] MyFavorite(F3) g Qfan ControlF6) Search(F9) 3; AURA(F4) T ReSize BAR
Thursday .

My Favorites Main Ai Tweaker Advanced Monitor Boot Tool Exit

€& Advanced\PC Subsystem Settings

Above 4G Decoding Enabled "”jZ]

Re-Size BAR Support | Auto e

SR-IOV Support Disabled -

AMDQ |
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SMART ACCESS MEMORY

How to check it is working?

 AMD Radeon Software = Performance = Tuning = Smart Access Memory

Smart Access Memory (2 @ Enabled
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SMART ACCESS MEMORY

How to use it?

« Vulkan: Detect and use >256 MB of *_DEVICE_LOCAL_BIT | *_HOST_VISIBLE_BIT memory.

 D3D12: No direct access at the moment.
* You can just prepare your game to work fast in any case...

AMDQ

AMD PUBLIC Efficient Use of GPU Memory in Modern Games SEPTEMBER 2021
GPUOpen | v |



[Public]

REBAR IN VULKAN

Radeon RX 6900 XT, driver 21.3.2, ReBAR = Off

heapCount=3, typeCount=8

Heap 0: 16894656512 B (15.73 GB) DEVICE_LOCAL, MULTI_INSTANCE
heapBudget = 16072161280 B (14.97 GB)

heapUsage = 22675456 B (21.62 MB) <

- VRAM

Type 0: DEVICE_LOCAL
Type 4: DEVICE_LOCAL, DEVICE_COHERENT (AMD), DEVICE_UNCACHED (AMD)

Heap 1: 25454182400 B (23.71 GB)
heapBudget = 24918255616 B (23.21 GB)
heapUsage = 4526080 B (4.32 MB)

Type 1: HOST_VISIBLE, HOST_COHERENT <

. SysRAM

Type 3: HOST_VISIBLE, HOST_COHERENT, HOST_CACHED
Type 5: HOST_VISIBLE, HOST_COHERENT, DEVICE_COHERENT (AMD), DEVICE_UNCACHED (AMD)
Type 7: HOST_VISIBLE, HOST_COHERENT, HOST_CACHED, DEVICE_COHERENT (AMD), DEVICE_UNCACHED (AMD)

Heap 2: 268435456 B (256.00 MB) DEVICE_LOCAL, MULTI_INSTANCE
heapBudget = 255367008 B (243.54 MB)

- BAR

heapUsage = 0 B (0) <
dype 2: DEVICE_LOCAL, HOST _VISIBLE, HOST_COHERENT
Type 6: DEVICE_LOCAL, HOST_VISIBLE, HOST_COHERENT, DEVICE_COHERENT (AMD), DEVICE_UNCACHED (AMD)

= = AMDQO
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REBAR IN VULKAN

Radeon RX 6900 XT, driver 21.3.2, ReBAR = On

heapCount=2, typeCount=8

Heap 0: 25454182400 B (23.71 GB)
heapBudget = 24918255616 B (23.21 GB)
heapUsage = 4526080 B (4.32 MB)
Type 1: HOST_VISIBLE, HOST_COHERENT
Type 3: HOST_VISIBLE, HOST_COHERENT, HOST_CACHED < | S\/SRAM
Type 5: HOST_VISIBLE, HOST_COHERENT, DEVICE_COHERENT (AMD), DEVICE_UNCACHED (AMD)
Type 7: HOST_VISIBLE, HOST_COHERENT, HOST_CACHED, DEVICE_COHERENT (AMD), DEVICE_UNCACHED (AMD)

Heap 1: 177163091968 B (15.98 GB) DEVICE_LOCAL, MULTI_INSTANCE
heapBudget = 16058044416 B (14.96 GB)
heapUsage = 0 B (0)
Type 0: DEVICE_LOCAL
Type 2: DEVICE_LOCAL, HOST_VISIBLE, HOST_COHERENT < " ReBAR
Type 4: DEVICE_LOCAL, DEVICE_COHERENT (AMD), DEVICE_UNCACHED (AMD)
Type 6: DEVICE_LOCAL, HOST_VISIBLE, HOST_COHERENT, DEVICE_COHERENT (AMD), DEVICE_UNCACHED (AMD)

LN}
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PERFORMANCE TIPS

CPU writes to BAR

 If your resource ends up in VRAM (BAR) not SysRAM (UPLOAD), bad CPU access patterns become many
times slower! &, &, &,
* Same recommendations apply: only write sequentially or use memcpy(). é

« With PCle 4.0, CPU writes to VRAM can be same order of magnitude as to SysRAM!
* No need to be afraid of writing to BAR. é

AMDQI
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PERFORMANCE TIPS

Avoid overhead

« Overhead of each separate buffer/texture|/image = use few large buffers instead of many small buffers,
sub-allocate parts of them, use offsets to address your data.

* Better to have >64 KB of meaningful data in a buffer.

« Overhead of each Submit|Execute and cross-queue synchronization using semaphores|events >

* hide the latency by other concurrent work,
e copy on the same queue where you use the data,
e oravoid copy by reading data directly.

* Map/Unmap has some overhead - leaving buffer persistently mapped is correct and recommended.

AMDQI
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PERFORMANCE TIPS

Allocation
Since UPLOAD resources can go to VRAM:
* Don’t oversubscribe VRAM - don’t allocate too much UPLOAD memory, only as much as necessary.

« “Preferred heap” is decided upon creation = allocate the most important resources first to increase
chances they go to VRAM.

« “Residency” is managed for entire DeviceMemory block|heap = create big and important resources as
separate allocations - committed|dedicated.

AMDQI
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PERFORMANCE TIPS

Which queue to use for a copy: Graphics/Compute vs Copy|Transfer ?

* When copying from UPLOAD over PCle, copy queue is a bit faster, &

* butwhen copy source ends up in VRAM, copy queue is few times slower! &, & &,
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PERFORMANCE TIPS

* Use copy queue:
* When copying in the background, asynchronously to render frames (e.g., texture streaming).

* Use graphics/compute queue:
* When the results are needed immediately (e.g., dynamic data needed in this frame).
* Maybe use async compute for background copies?

* Consider skipping the copy, CPU-write and GPU-read directly from UPLOAD or BAR
« For small amounts of data (e.g., a constant|uniform buffer) or data to be read only once.
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COMMERCIAL BREAK

Vulkan Memory Allocator
e https://github.com/GPUQOpen-LibrariesAndSDKs/VulkanMemoryAllocator

* D3D12 Memory Allocator
e https://github.com/GPUQpen-LibrariesAndSDKs/D3D012MemoryAllocator

* (C++ libraries
* Open source, MIT license
« Work with any GPU and on any platform supporting Vulkan|DX12

—

Help to choose right memory type for a resource.
2. Allocate large DeviceMemory blocks|heaps and sub-allocate parts of them for your resources.

3. Hide boilerplate code inside convenient functions like CreateResource|vmaCreateBuffer.

AMDQ
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SUMMARY

* Know available types of memory.

* Resizable BAR / Smart Access Memory.

e Be careful with CPU access to uncached mapped memory - only sequential writes or memcpy().
* 3 ways to upload data CPU - GPU.

* Plan carefully which queue to use for a copy (or none at all).
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