@c RADEON R(Z;N AMDZ1

EFFICIENT USE OF GPU MEMORY
IN MODERN GAMES

AMDA

GPUQOpen

[Public]

AGENDA

* Types of memory

 Acasestudy

 Resizable BAR, Smart Access Memory
* Performance tips

 Summary

Talking about desktop PC only.

It will be low level...

AMDQ

AMD PUBLIC Efficient Use of GPU Memory in Modern Games SEPTEMBER 2021
GPUOpen | v |

[Public]

TYPES OF MEMORY

: _ VB, IB, CBV, SRV
Physically: RT, DS, UAV, ...
. aka “local”, “framebuffer”,
m GPU < > Video RAM (VRAM) MEMORY_POOL._L1| DEVICE_LOCAL
PN
Copy... — PCle®
A 4

ka “ te”,
[:] CPU < > System RAM (SysRAM) EA(EMBES:{F?OOL_ Lo
void™* mappedPtr; l

* Direct3D® 12 | Vulkan®

AMDQ

AMD PUBLIC Efficient Use of GPU Memory in Modern Games SEPTEMBER 2021
GPUOpen | v |

[Public]

TYPES OF MEMORY

Logically:
'm CPU < > D3D12_HEAP_TYPE_DEFAULT
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
* UPLOAD * READBACK
CPU < > *_HOST_VISIBLE_BIT | *_HOST_VISIBLE_BIT |
* HOST_COHERENT_BIT | | * HOST_COHERENT BIT|

* HOST_CACHED_BIT

Direct3D® 12 | Vulkan®

AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

[Public]

TYPES OF MEMORY

Logically:

'm CPU : > D3D12_HEAP_TYPE_DEFAULT
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

* Direct and fast access on GPU.
* No direct access from CPU.
D CPU * Good for resources that:
* GPU writes and reads frequently - render target, depth/stencil, UAV.
e CPU uploads once, GPU reads frequently - immutable vertex/index

buffers, textures.

Direct3D® 12 | Vulkan®

AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

[Public]

TYPES OF MEMORY

Logically:

« Direct access on CPU (mapping), cached.
m GPU * Good for resources:
* Copied from or written directly by GPU, read by CPU.

(A less common case, will not discuss here.)

*_UPLOAD *_READBACK

D -y < > *_HOST_VISIBLE_BIT | * HOST_VISIBLE_BIT |
* HOST_COHERENT_BIT | | *_HOST_COHERENT_BIT |

* HOST_CACHED_BIT

Direct3D® 12 | Vulkan®

AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

[Public]

TYPES OF MEMORY

Logically:
* Direct access on CPU (mapping), uncached, write-combined.
m E Good for resources:
* Written by CPU, copied to GPU.
« Written by CPU, read directly by GPU.
* _UPLOAD * READBACK
D CPU < > *_HOST_VISIBLE_BIT | *_HOST_VISIBLE_BIT |
* _HOST_COHERENT_BIT * HOST_COHERENT_BIT |

*_HOST_CACHED_BIT

Direct3D® 12 | Vulkan®

AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

[Public]

UPLOAD HEAP

Uncached & write-combined means:

Fast:

Slow:
€® Sequential writes & Scattered writes
» mappedPtr[i] = srcDatali; « mappedPtr[indirect[i]] = x;
é Copy toit &, Reads
« memcpy(mappedPtr, srcData, ...); * vy = mappedPtr[i];

& |ncl. implicit reads
« mappedPtr[i] += z;

Pro tip: Align start of your data to 64 B.

AMDQ

AMD PUBLIC Efficient Use of GPU Memory in Modern Games SEPTEMBER 2021
GPUOpen | v |

[Public]

WAYS TO UPLOAD DATA

Method 1. CPU writes to UPLOAD - GPU executes copy command - GPU reads from DEFAULT

'm CPU < * DEFAULT
* DEVICE_LOCAL BIT

VB, IB, CBV, SRV...

CopyResource
vkCmdCopyBuffer

* UPLOAD
D CPU > * HOST VISIBLE BIT |

* HOST_COHERENT_BIT

void* mappedPtr;

AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

[Public]

WAYS TO UPLOAD DATA

Method 2. CPU writes to UPLOAD - GPU reads from UPLOAD

| o

VB, IB, CBV, SRV...

* UPLOAD
D CPU > * HOST VISIBLE BIT |

* HOST_COHERENT_BIT

void* mappedPtr;

AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

[Public]

WAYS TO UPLOAD DATA

 Good for buffers.

« Textures|images better be in opaque GPU-specific
format to use optimized swizzling/compression:
'm CPU D3D12_TEXTURE_LAYOUT_UNKNOWN]|
VK_IMAGE_TILING_OPTIMAL - need to do buffer-
VB, IB, CBV, SRV... image copy

* UPLOAD
D CPU > * HOST VISIBLE BIT |

* HOST_COHERENT_BIT

void’gmappedPtr;

AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

[Public]

BAR

Method 3. There is a 4th type of memory:

m GPU < Base Address Register (BAR)
aka “aperture”, “local-visible”

VB, IB, CBV, SRV...

void* mappedPtr;

]~ -

AMDQ

AMD PUBLIC Efficient Use of GPU Memory in Modern Games SEPTEMBER 2021
GPUOpen | v |

[Public]

BAR

Method 3. There is a 4th type of memory:

m GPU h Base Address Register (BAR)
aka “aperture”, “local-visible”

VB, IB, CBV, SRV...

e Residesin VRAM.
* Accessible directly for mapping on the CPU, uncached & write-combined

(like UPLOAD).
[:] CPU « Good for resources:

* Written by CPU, read by GPU frequently (“dynamic”).

AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

[Public]

BAR

« VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT|*_HOST_VISIBLE_BIT | *_ HOST_COHERENT_BIT
* Not always available - availability depends on GPU and driver.

* D3D12: not exposed as of today.

AMDQ

AMD PUBLIC Efficient Use of GPU Memory in Modern Games SEPTEMBER 2021
GPUOpen | v |

A CASE STUDY

* A game using DXT1.
* Running on Radeon RX 6900 XT, 1920x1080 at 38 FPS. @&. & &,
 GPUView showed the game was CPU-bound in the renderer DLL.

Flip Queue [0] Hidden

S50 IR NN KN NN GEN N I CENN RN GEN G ENGED KN (1 RN 1 EKO CCINN CEN CKIN RN CENON EN EN X EN CEN E-q

AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

[Public]

A CASE STUDY

 AMD pProf showed hotspots as 2 renderer functions that just read & write some pointer...

Pl AMDUProf - [C/Users/Adarn Saw...-26-2021_14-33-06.db]

ﬁ PROFILE SUMMARY ANALYZE SOURCES
CHWShader D3D::GetSPIBufferDatajunion _m128 * const, struct SRenditem *,int,int) x
) Filters
PID: W TID: TID[16088] ™ View timer-based profile W
A Address | Line | Assembly CPU TINE (5)

Bx7ff929a19265 add rsp,8eeealcsh
Bx7ff929a1926¢ pop rl3
Bx7ff929a1926e pop rdi
ax7ffoz29a1926f pop rsi
Bx7ff929a19270 pop rbp
Bx7 929319271 retng
ex7ff929a19272 mov rox,[@eeesealssdesbleh] exlsedasble
Bx7ff929a19279 mov [rsp+@eeaelcdh],rbx 4,33
Bx7TTo29a19281 add rox,@eeoed58h
@x7TT929a19288 cmp [@eeeeeel3@3sczbeh],rsi exlse3sczbe 2.29
Bx7ff929a1928F mov [rsp+eeeaelbsh],ri2
Bx7ff929a19297 mov [rsp+@eeselbeh],rid

ax7ff929a192a7 jnz eeeeeeelse@e92cah @xlseeedlca

Bx7f1929a192a9 wor r9d,r9d

AMDQ

AMD PUBLIC Efficient Use of GPU Memory in Modern Games SEPTEMBER 2021
: GPUOpen | v

[Public]

A CASE STUDY

 RenderDoc showed before every draw call they map a dynamic VB and CB...

1696 Drawlndexed(5922) 23./6
1704 DrawIndexed(5922) 28.32
1721 DrawlIndexed(5922) 24.64
1728 DrawIndexed(5922) 11.16
i;ig g;:ﬁ:g:i:ggggg %ggg Resource Initialisation Parameters
1755 DrawIndexed(5922) 6.48 fir;’%itfgevice [Value
DrawIndexed(5922) 22. 68
1772 | Drawlndexed(®922) 1030 pbesc ___D3DIL BUFFER DESCO |
1785 DrawlIndexedInstanced(5922, 3) 29 12 ByteWidth 256
1807 DrawlIndexedInstanced(2958, 12) 78.12 Usage D3D11_USAGE_DYNAMIC
1825 DrawIndexedInstanced(2958, 33) 39.64 BindFlags D3D11_BIND_CONSTANT BUFFER
1847 DrawlIndexedInstanced(1479, 3) 36.12
1865 DrawIndexedInstanced(1479, 25) 40.64 CPUAcces... D3D1LCPU_ACCESS_WRITE
1880 DrawIndexed(1479) 18.92 MiscFlags 0
1895 DrawIndexedInstanced(1479, 25) 26.40 StructureB... 0
101N |t Toam A1 AT00N an 29 Y pIn.It.IalData NULL
API Inspector 2 pBuffer Buffer 26709+
> 1763 ID3D11DeviceContext::Map i::t:::g::m (22526 bytes)
> 1764 ID3D11DeviceContext::Map
> 1765 ID3D11DeviceContext::Unmap
> 1766 ID3D11DeviceContext::Unmap
>1/6/ 1D3D11DeviceContext::VS5etConstantBuffers
> 1768 ID3D11DeviceContext::VSSetConstantBuffers
> 1769 ID3D11DeviceContext::PSSetConstantBuffers
> 1770 ID3D11DeviceContext::PSSetConstantBuffers
> 1771 ID3D11DeviceContext::PSSetSamplers
> 1772 ID3D11DeviceContext::DrawlIndexed

AMD PUBLIC | Efficient Use of GPU Memory in Modern Games SEPTEMBER 2021

[Public]

A CASE STUDY

* Did they read from a mapped pointer?
* Theydid! By accident...

ctx->Map(buf, 0, D3D11_MAP_WRITE_DISCARD, 0, &mapped);
Vector* pDst = (Vector*)mapped->pData;

pDst[0] = ...
pDst[1] = ...
(.0 {
stt[U] += ... o
stt[1] += ... —
}

ctx->Unmap(buf, 0);

AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

[Public]

A CASE STUDY

Why so slow?
e This memory is uncached & write-combined - should be only written, never read.
* Microsoft® explicitly warns about it in the docs of ID3D11DeviceContext::Map.

e Qurdriver decided to put a dynamic DX11 buffer in BAR (VRAM) instead of SysRAM >
making this bad access pattern even slower. @, &,

AMDQ

AMD PUBLIC Efficient Use of GPU Memory in Modern Games SEPTEMBER 2021
GPUOpen | v |

[Public]

A CASE STUDY

The solution: alignas(64) Vector src[N];
src[0] = ...
src[1] = ...
if(...) {
src[0] += ...
src[1] += ...
}
ctx->Map(buf, 0, D3D11_MAP_WRITE_DISCARD, 0, &mapped);

memcpy(mapped->pData, src, N * sizeof(Vector));
ctx->Unmap(buf, 0);

Result: final game running at 4K at 80 FPS. ¢p

AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

[Public]

REBAR & SAM

 Traditional BAR: fixed size 256 MB.
 Resizable BAR (ReBAR): makes entire VRAM CPU-visible.

* Smart Access Memory (SAM): AMD technology that utilizes ReBAR to boost performance in games

AMDQ

GPU Open AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

[Public]

SMART ACCESS MEMORY

How to ensure compatibility?
ReBAR is a low-level feature...

* Ensure compatible hardware: motherboard, CPU, GPU.
 E.g., Ryzen 5000 series processor, Radeon 6000 graphics card.

 Update motherboard BIOS.
* Use Windows® 10 with latest updates.
* Update graphics driver.

AMDQ

AMD PUBLIC Efficient Use of GPU Memory in Modern Games SEPTEMBER 2021
GPUOpen | v |

[Public]

SMART ACCESS MEMORY

How to enable?

Enter BIOS, enable: Advanced - PCl Subsystem Settings -
 Above 4K Decoding

* Re-Size BAR Support

S Wy# Uer BIOS utility - Advanced Mode

&
07/08/2021 1 7 B 1 70 | 52 english =] MyFavorite(F3) g Qfan ControlF6) Search(F9) 3; AURA(F4) T ReSize BAR
Thursday .

My Favorites Main Ai Tweaker Advanced Monitor Boot Tool Exit

€& Advanced\PC Subsystem Settings

Above 4G Decoding Enabled "”jZ]

Re-Size BAR Support | Auto e

SR-IOV Support Disabled -

AMDQ |

Gpuopen AMD PUBLIC

Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

[Public]

SMART ACCESS MEMORY

How to check it is working?

 AMD Radeon Software = Performance = Tuning = Smart Access Memory

Smart Access Memory (2 @ Enabled

AMDQ

AMD PUBLIC Efficient Use of GPU Memory in Modern Games SEPTEMBER 2021
GPUOpen | v |

[Public]

SMART ACCESS MEMORY

How to use it?

« Vulkan: Detect and use >256 MB of *_DEVICE_LOCAL_BIT | *_HOST_VISIBLE_BIT memory.

 D3D12: No direct access at the moment.
* You can just prepare your game to work fast in any case...

AMDQ

AMD PUBLIC Efficient Use of GPU Memory in Modern Games SEPTEMBER 2021
GPUOpen | v |

[Public]

REBAR IN VULKAN

Radeon RX 6900 XT, driver 21.3.2, ReBAR = Off

heapCount=3, typeCount=8

Heap 0: 16894656512 B (15.73 GB) DEVICE_LOCAL, MULTI_INSTANCE
heapBudget = 16072161280 B (14.97 GB)

heapUsage = 22675456 B (21.62 MB) <

- VRAM

Type 0: DEVICE_LOCAL
Type 4: DEVICE_LOCAL, DEVICE_COHERENT (AMD), DEVICE_UNCACHED (AMD)

Heap 1: 25454182400 B (23.71 GB)
heapBudget = 24918255616 B (23.21 GB)
heapUsage = 4526080 B (4.32 MB)

Type 1: HOST_VISIBLE, HOST_COHERENT <

. SysRAM

Type 3: HOST_VISIBLE, HOST_COHERENT, HOST_CACHED
Type 5: HOST_VISIBLE, HOST_COHERENT, DEVICE_COHERENT (AMD), DEVICE_UNCACHED (AMD)
Type 7: HOST_VISIBLE, HOST_COHERENT, HOST_CACHED, DEVICE_COHERENT (AMD), DEVICE_UNCACHED (AMD)

Heap 2: 268435456 B (256.00 MB) DEVICE_LOCAL, MULTI_INSTANCE
heapBudget = 255367008 B (243.54 MB)

- BAR

heapUsage = 0 B (0) <
dype 2: DEVICE_LOCAL, HOST _VISIBLE, HOST_COHERENT
Type 6: DEVICE_LOCAL, HOST_VISIBLE, HOST_COHERENT, DEVICE_COHERENT (AMD), DEVICE_UNCACHED (AMD)

= = AMDQO
EDE 1 AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

GPUOpen

[Public]

REBAR IN VULKAN

Radeon RX 6900 XT, driver 21.3.2, ReBAR = On

heapCount=2, typeCount=8

Heap 0: 25454182400 B (23.71 GB)
heapBudget = 24918255616 B (23.21 GB)
heapUsage = 4526080 B (4.32 MB)
Type 1: HOST_VISIBLE, HOST_COHERENT
Type 3: HOST_VISIBLE, HOST_COHERENT, HOST_CACHED < | S\/SRAM
Type 5: HOST_VISIBLE, HOST_COHERENT, DEVICE_COHERENT (AMD), DEVICE_UNCACHED (AMD)
Type 7: HOST_VISIBLE, HOST_COHERENT, HOST_CACHED, DEVICE_COHERENT (AMD), DEVICE_UNCACHED (AMD)

Heap 1: 177163091968 B (15.98 GB) DEVICE_LOCAL, MULTI_INSTANCE
heapBudget = 16058044416 B (14.96 GB)
heapUsage = 0 B (0)
Type 0: DEVICE_LOCAL
Type 2: DEVICE_LOCAL, HOST_VISIBLE, HOST_COHERENT < " ReBAR
Type 4: DEVICE_LOCAL, DEVICE_COHERENT (AMD), DEVICE_UNCACHED (AMD)
Type 6: DEVICE_LOCAL, HOST_VISIBLE, HOST_COHERENT, DEVICE_COHERENT (AMD), DEVICE_UNCACHED (AMD)

LN}
= AMDD
DE 1 AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

GPUOpen

[Public]

PERFORMANCE TIPS

CPU writes to BAR

 If your resource ends up in VRAM (BAR) not SysRAM (UPLOAD), bad CPU access patterns become many
times slower! &, &, &,
* Same recommendations apply: only write sequentially or use memcpy(). é

« With PCle 4.0, CPU writes to VRAM can be same order of magnitude as to SysRAM!
* No need to be afraid of writing to BAR. é

AMDQI
1 AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

GPUOpen

[Public]

PERFORMANCE TIPS

Avoid overhead

« Overhead of each separate buffer/texture|/image = use few large buffers instead of many small buffers,
sub-allocate parts of them, use offsets to address your data.

* Better to have >64 KB of meaningful data in a buffer.

« Overhead of each Submit|Execute and cross-queue synchronization using semaphores|events >

* hide the latency by other concurrent work,
e copy on the same queue where you use the data,
e oravoid copy by reading data directly.

* Map/Unmap has some overhead - leaving buffer persistently mapped is correct and recommended.

AMDQI
1 AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

GPUOpen

[Public]

PERFORMANCE TIPS

Allocation
Since UPLOAD resources can go to VRAM:
* Don’t oversubscribe VRAM - don’t allocate too much UPLOAD memory, only as much as necessary.

« “Preferred heap” is decided upon creation = allocate the most important resources first to increase
chances they go to VRAM.

« “Residency” is managed for entire DeviceMemory block|heap = create big and important resources as
separate allocations - committed|dedicated.

AMDQI
1 AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

GPUOpen

[Public]

PERFORMANCE TIPS

Which queue to use for a copy: Graphics/Compute vs Copy|Transfer ?

* When copying from UPLOAD over PCle, copy queue is a bit faster, &

* butwhen copy source ends up in VRAM, copy queue is few times slower! &, & &,

AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

[Public]

PERFORMANCE TIPS

* Use copy queue:
* When copying in the background, asynchronously to render frames (e.g., texture streaming).

* Use graphics/compute queue:
* When the results are needed immediately (e.g., dynamic data needed in this frame).
* Maybe use async compute for background copies?

* Consider skipping the copy, CPU-write and GPU-read directly from UPLOAD or BAR
« For small amounts of data (e.g., a constant|uniform buffer) or data to be read only once.

AMDQ

AMD PUBLIC Efficient Use of GPU Memory in Modern Games SEPTEMBER 2021
GPUOpen | v |

[Public]

COMMERCIAL BREAK

Vulkan Memory Allocator
e https://github.com/GPUQOpen-LibrariesAndSDKs/VulkanMemoryAllocator

* D3D12 Memory Allocator
e https://github.com/GPUQpen-LibrariesAndSDKs/D3D012MemoryAllocator

* (C++ libraries
* Open source, MIT license
« Work with any GPU and on any platform supporting Vulkan|DX12

—

Help to choose right memory type for a resource.
2. Allocate large DeviceMemory blocks|heaps and sub-allocate parts of them for your resources.

3. Hide boilerplate code inside convenient functions like CreateResource|vmaCreateBuffer.

AMDQ

GPU Op en AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://github.com/GPUOpen-LibrariesAndSDKs/D3D12MemoryAllocator

[Public]

SUMMARY

* Know available types of memory.

* Resizable BAR / Smart Access Memory.

e Be careful with CPU access to uncached mapped memory - only sequential writes or memcpy().
* 3 ways to upload data CPU - GPU.

* Plan carefully which queue to use for a copy (or none at all).

AMDQ

GPU Open AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

REFERENCES

1. S.Tovey, “Vulkan Memory Management” presented at Vuklanised, 2018.
2. A. Sawicki, “Memory management in Vulkan and DX12"” presented at the Game Developers Conference, 2018.

3. (. Brennan, “Getting the Most Out of Delta Color Compression” GPUOpen.
https://gpuopen.com/learn/dcc-overview/

4. “AMD Smart Access Memory” AMD.
https://www.amd.com/en/technologies/smart-access-memory

5. 0. Homburg, “How to get most out of Smart Access Memory (SAM)” GPUQOpen.
https://gpuopen.com/learn/get-the-most-out-of-smart-access-memory/

6. “AMD RDNA 2 Performance Guide” GPUQOpen.
https://gpuopen.com/performance/

7. “Vulkan Memory Allocator” GitHub.
https://github.com/GPUQOpen-LibrariesAndSDKs/VulkanMemoryAllocator

8. “D3D12 Memory Allocator” GitHub.
https://github.com/GPUQOpen-LibrariesAndSDKs/D3D12MemoryAllocator

AMDQ

GPU Op en AMD PUBLIC | Efficient Use of GPU Memory in Modern Games | SEPTEMBER 2021

https://gpuopen.com/learn/dcc-overview/
https://www.amd.com/en/technologies/smart-access-memory
https://gpuopen.com/learn/get-the-most-out-of-smart-access-memory/
https://gpuopen.com/performance/
https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
https://github.com/GPUOpen-LibrariesAndSDKs/D3D12MemoryAllocator

[Public]

THANKS!

Bryan Turkelson

* Jonas Gustavsson
 Matthaus Chajdas
* Nicolas Thibieroz

* OskarHomburg

* Paul Blinzer

* Steven Tovey

AMDQ

AMD PUBLIC Efficient Use of GPU Memory in Modern Games SEPTEMBER 2021
GPUOpen | v |

[Public]
© 2021 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other
product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

Microsoft is a registered trademark of Microsoft Corporation in the US and other jurisdictions. Windows is a
registered trademark of Microsoft Corporation in the US and other jurisdictions. Vulkan and the Vulkan logo are
registered trademarks of the Khronos Group Inc.

Disclaimer

The information presented in this document is for informational purposes only and may contain technical
inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may
be rendered inaccurate for many reasons, includindg but not limited to product and roadmap changes, component
and motherboard version changes, new model and/or product releases, product differences between differin
manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of
security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update
or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to
make changes from time to time to the content hereof without obligation of AMD to notify any person of such
revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR
OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN
NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD
IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMDQ

AMD PUBLIC Efficient Use of GPU Memory in Modern Games SEPTEMBER 2021
GPUOpen | v |

