
TAKAHIRO HARADA

AMD’S RAY TRACING
RESEARCH

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 2

• High level overview of our ray tracing related R&D

• Topics
• Geometric representation

• Improvements in importance resampling techniques

• Volume sampling

• Orochi

• HIPRT

• Radeon ™ ProRender

INTRODUCTION

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 3

MULTI-RESOLUTION GEOMETRIC REPRESENTATION

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 4

• Problem description
• Is it possible to reduce the algorithmic complexity of ray cast using BVH?

• Explicit LOD is the solution for rasterization

• Requires both pre-processing and additional memory for storing these

• Can we do better?

• What do we do for materials at another geometric representation?

• Simply filtering parameters do not work for complex material graph

• Our geometric representation
• Re-using the existing data structure for ray tracing, which is the BVH

• No need for additional data

• Stochastic material sampling

• No assumption about materials on the geometry we simplify

• No restriction on the material

DO WE ALWAYS NEED TO RAY CAST AGAINST FINE GEOMETRIES?

(°д°)

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 5

• Geometric approximation
• Use AABBs as a coarse approximation

• Multi-resolution representation of geometry
without any additional precomputation

• Use ray cone for LOD computation

METHOD

Fine LOD Coarse LOD

?

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 6

• Geometric approximation
• Use AABBs as a coarse approximation

• Multi-resolution representation of geometry
without any additional precomputation

• Use ray cone for LOD computation

• Stochastic material sampling
• Sample a triangle of node’s descendants

and use its material for shading

• Only two integers are stored in each node

• Support complex shading network

METHOD

Exact Fine approx. Coarse approx.

Fine LOD Coarse LOD

Procedural texture can be filtered

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 7

RESULTS

Multi-Resolution Geometric Representation using BoundingVolume Hierarchy for Ray Tracing, S. Ikeda et al., GPUOpen Tech Report, No. 22-02-f322

Path traced Approximation Diff

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 8

IMPORTANCE RESAMPLING
+ RESERVOIR SAMPLING RELATED

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 9

• Importance resampling
• Importance Resampling for Global Illumination, Talbot et al., 2005

• Reservoir sampling

• Stochastic Light Culling, Tokuyoshi and Harada, 2016

• Importance resampling + Weighted reservoir sampling
• Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting, Bitterli et al., 2020

IMPORTANCE RESAMPLING + RESERVOIR SAMPLING

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 10

WORLD-SPACE SPATIOTEMPORAL RESERVOIR
REUSE

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 11

• Reservoir-based resampling is a great solution for light sampling
• Allows to efficiently sample from thousands of light sources

• GPU-friendly streaming approach makes for good performance

• No pre-processing == Compatible with dynamic scenes

• Unfortunately, the original approach does not scale to sampling lights at secondary path vertices
• Screen-space reservoir reuse

• Limited to path vertices directly visible from camera

• We extended the reservoir reuse using a world-space structure

RESERVOIR-BASED SPATIOTEMPORAL IMPORTANCE RESAMPLING (RESTIR)

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 12

• Adaptive world-space reservoir cache using spatial hashing
• Quantize the world-space position based on an adaptive cell size and hash it

• Conflicts can be resolved using linear probing

• Create a list of reservoirs for every hash cell

• This allows to efficiently resample from many neighbor reservoirs
• We find nearby reservoirs in a single lookup through jittering

• Reservoir resampling available anywhere in world space

• Neighbor path vertices can share the effort in finding the best light sample!

WORLD-SPACE SPATIOTEMPORAL RESERVOIR REUSE

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 13

RESULTS – 30,672 AREA LIGHTS

1spp – NEE 1spp – WS ReSTIR

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 14

RESULTS – 37,436 AREA LIGHTS

World-Space Spatiotemporal Reservoir Reuse for Ray-Traced Global Illumination, Guillaume Boissé, SIGGRAPH Asia 2021, 2021

1spp – NEE 1spp – WS ReSTIR

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 15

TILED RESERVOIR SAMPLING FOR MANY-LIGHT
RENDERING

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 16

• Quality of reservoir sampling depends on initial candidate samples

• Uniform sampling of tens of candidates is insufficient

• Especially for lights close to surfaces (e.g., virtual point lights)

• Need an efficient sampling technique for candidates

CANDIDATE SAMPLES FOR RESERVOIR SAMPLING

Many virtual point lights

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 17

1. Generate 1024 candidates/tile

2. Apply stochastic light culling [Tokuyoshi and Harada 2017] for each tile

• Tiled culling using random light ranges

• Acts as Russian roulette according to the fall-off of each light source

3. Perform reservoir sampling for survived candidates

STOCHASTIC LIGHT CULLING FOR MANY CANDIDATES

reject accept

Y. Tokuyoshi and T. Harada. 2017. Stochastic Light Culling for VPLs on GGX Microsurfaces. Comput. Graph. Forum 36, 4, 55–63
Y. Tokuyoshi. 2021. Tiled Reservoir Sampling for Many-Light Rendering. AMD Tech. Rep, No. 21-11-ecdc

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 18

In
terleave

• Stochastic light culling can produce a positive correlation of variance between adjacent pixels

• Decorrelate the variance by deinterleaving pixels [Segovia et al. 2006]

• Split 65536 candidates into 8x8 deinterleaved screen subregions (1024 candidates/subregion)

• Coherent memory access in each tile ☺

• Randomization of deinterleaving pixels further decorrelates the variance

DECORRELATION OF VARIANCE

D
ein

terleave

G-buffer Tiled reservoir sampling Reservoirs8×8 subregions

B. Segovia, J-C. Iehl, R. Mitanchey, and B. Péroche. 2006. Non-Interleaved Deferred Shading of Interleaved Sample Patterns. In GH' 06. 53–60

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 19

RESULTS

Previous Ours Ours
(+ random deinterleaving)

5.3 ms 4.2 ms 4.2 ms

Y. Tokuyoshi. 2021. Tiled Reservoir Sampling for Many-Light Rendering. AMD Tech. Rep, No. 21-11-ecdc

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 20

STOCHASTIC LIGHT CULLING FOR
VOLUME RENDERING

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 21

• Volume rendering is essential to add realism to a rendered image
• Light shafts, Fog effect

• Volume scattering on primary ray is more visible compared to scattering on deeper paths

• A tree-based light sampling is often used in rendering with many lights
• Need to maintain a tree for volume scattering

• Is there a lightweight light sampling technique?

• Specialized for volume scattering on primary rays

INTRO

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 22

• Light culling
• Popular in real time

• We can cull lights to reduce the computational cost ☺

• Introduces darkening bias, not usable

• Stochastic light culling
• Give lights a finite range sampled stochastically

• We can cull lights to reduce the computational cost ☺

• Does not make it dark, converges with enough samples ☺

• Proposed for surface lighting

• Applicable for volume scattering?

LIGHT CULLING

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 23

• Not a sphere-point intersection

• Need ray-sphere intersection

• Define 2 bounding spheres in the range of fall-off function
• Inner sphere for the 100% acceptable range

• Outer sphere for a stochastic range

• Formulate the importance calculation for 3 cases
• No intersection

• Intersect to the outer sphere but not to the inner sphere

• Intersect to both spheres

• We can use screen-space tiled light culling
• No additional data structure ☺

STOCHASTIC LIGHT CULLING FOR VOLUMES

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 24

• Equal-time comparison in 1 second

• Improved convergence compared to baseline

• Baseline: reservoir sampling to choose one light with equiangular sampling

RESULTS

Stochastic Light Culling for Single Scattering in Participating Media, S. Fujieda et al., Eurographics 2022 short paper

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 25

OROCHI

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 26

• Problem description
• Need to maintain 2 backends, HIP and CUDA

• Requires compilation of each backend separately

• Need to explicitly link against HIP or CUDA (load-time linking)
• Unnecessary complication developers need to think about

• Orochi is a solution for this
• No linking required at compile-time, instead load APIs dynamically (runtime linking)
• Query for devices

• Returns # of devices you have (Can query multiple vendors (both AMD and NVIDIA GPUs))

• Create a context on a device you like to use
• No need to worry about which one is AMD, NVIDIA

• Can compile your app without SDKs installed
• Supports Windows and Linux

• Open source
• https://github.com/GPUOpen-LibrariesAndSDKs/Orochi

• Contributions are welcome!

OROCHI - SUPPORT BOTH HIP AND CUDA WITH EASE

Yamata no Orochi
(ヤマタノオロチ, 八岐大蛇) is a legendary eight-
headed and eight-tailed Japanese dragon.
Public domain image courtesy Wikipedia
(https://en.wikipedia.org/wiki/Yamata_no_Orochi#/m
edia/File:YamataNoOrochi.jpg)

https://github.com/GPUOpen-LibrariesAndSDKs/Orochi
https://en.wikipedia.org/wiki/Yamata_no_Orochi#/media/File:YamataNoOrochi.jpg

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 27

• Now

FOR CUDA USER

HIP
(amdhip64.dll/

libamdhip64.so…)

Orochi

CUDA
(nvcuda.dll/

libnvcuda.so…)

User code
(Driver API)

Runtime linking
(GetProcAddress/dlsym)

CUDA
(nvcuda.dll/

libnvcuda.so…)

User code
(Driver API)

• With Orochi

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 28

• Architecture

ARCHITECTURE

#include <Orochi/Orochi.h>

{
oroInitialize((oroApi)(ORO_API_CUDA | ORO_API_HIP), 0);

e = oroInit(0);
int nDevicesTotal;
e = oroGetDeviceCount(&nDevicesTotal);
int nAMDDevices;
e = oroGetDeviceCount(&nAMDDevices, ORO_API_HIP);
int nNVIDIADevices;
e = oroGetDeviceCount(&nNVIDIADevices, ORO_API_CUDA);

printf("# of devices: %d\n", nDevicesTotal);
printf("# of AMD devices: %d\n", nAMDDevices);
printf("# of NV devices: %d\n\n", nNVIDIADevices);

for(int i = 0; i < nDevicesTotal; i++)
{

oroDevice device;
e = oroDeviceGet(&device, i);
char name[128];
e = oroDeviceGetName(name, 128, device);

oroCtx ctx;
e = oroCtxCreate(&ctx, 0, device);
…

}
}

Orochi

CUDA
(nvcuda.dll/

libnvcuda.so…)

HIP
(amdhip64.dll/

libamdhip64.so…)

User code
(Driver API)

Runtime linking
(GetProcAddress/dlsym)

Initialize Orochi
(load libraries for
both CUDA and HIP)

Replace hip... or cu...
with oro…

• API example

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 29

HIPRT

Ray tracing API in HIP

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 30

• RDNA™ 2 GPUs have HW-accelerated ray tracing
• DXR and Vulkan APIs

• HIPRT
• HW-accelerated ray tracing in HIP

• The first release in March 2022

HIPRT

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 31

• Ray Tracing Library
• Ray tracing with bounding volume hierarchies (BVH)
• Scalability (construction speed vs. ray tracing sped)

• HW ray tracing acceleration

• General purpose
• Offline and online rendering

• Triangles, custom primitives, motion blur, dynamic geometry

• Cross-platform
• AMD and Nvidia GPUs
• Windows and Linux OSes

• Lightweight and Expressiveness
• Written on top of drivers

• Minimalistic setup

• Yet providing flexibility and lower-level control
• Designed for high performance

• Thin driver layer

• General purpose language based on modern C++ standards

HIPRT: RAY TRACING API IN HIP

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 32

Host code:

API EXAMPLE

__global__ void RayTraceKernel(

hiprtScene scene,

...)

{

...

hiprtRay ray;

generateRay(..., &ray.origin, &ray.direction);

ray.maxT = worldExtent;

hiprtSceneTraversalClosest tr(scene, ray, 0xffffffff);

hiprtHit hit = tr.getNextHit();

• Device Code

// Triangle mesh

hiprtTriangleMeshPrimitive mesh;

mesh.triangleIndices = d_triIdxBuf;

mesh.vertices = d_vtxBuf;

// Create and build geometry

hiprtGeometry geom;

hiprtCreateGeometry(..., &geom);

hiprtBuildGeometry(..., geom);

// Build trace kernel

hiprtBuildTraceKernel(...);

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 33

RADEON™ PRORENDER

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 34

• Toon shader, contour render
• Mix non-photo realistic in photo-real rendering

• Colored shadow
• Control shadow color

• Cutting plane
• See inside without modifying geometry

• Atmospheric volume
• Faster way to realize light shafts

• Primitive variables
• Complex material with simple set up

• Enhanced Cryptomatte AOVs
• Captures secondary visibilities too

• Flexible ramp node
• Material network can be used as an input

• HIP support
• New backend in HIP

RECENT FEATURE ADDITION

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 35

• Toon shader, contour render
• Mix non-photo realistic in photo-real rendering

• Colored shadow
• Control shadow color

• Cutting plane
• See inside without modifying geometry

• Atmospheric volume
• Faster way to realize light shafts

• Primitive variables
• Complex material with simple set up

• Enhanced Cryptomatte AOVs
• Captures secondary visibilities too

• Flexible ramp node
• Material network can be used as an input

• HIP support
• New backend in HIP

RECENT FEATURE ADDITION

https://gpuopen.com/learn/radeon-prorender-2-02-10/
https://gpuopen.com/learn/introducing-prorender-sdk-2-02-11/

https://gpuopen.com/learn/radeon-prorender-2-02-10/
https://gpuopen.com/learn/introducing-prorender-sdk-2-02-11/

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 36

• Presented some ray tracing related R&Ds done in AMD
• Geometric representation

• Improvements in importance resampling techniques

• Volume sampling

• Orochi

• HIPRT

• Radeon ™ ProRender

CONCLUSION

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 37

• Multi-Resolution Geometric Representation using Bounding Volume Hierarchy for Ray Tracing, Sho Ikeda,
Paritosh Kulkarni, Takahiro Harada, AMD Technical Report, No. 22-02-f322, 2022

• Tiled Reservoir Sampling for Many-Light Rendering, Yusuke Tokuyoshi, AMD Technical Report, No. 21-11-
ecdc, 2021

• World-Space Spatiotemporal Reservoir Reuse for Ray-Traced Global Illumination, Guillaume Boissé,
SIGGRAPH Asia 2021, 2021

• Stochastic Light Culling for Single Scattering in Participating Media, Shin Fujieda, Yusuke Tokuyoshi,
Takahiro Harada, Eurographics 2022 Short Papers, 2022

• https://gpuopen.com/learn/publications/

REFERENCES

https://gpuopen.com/learn/publications/

AMD PUBLIC | GDC22 | AMD’s RAY TRACING RESEARCH | MARCH 2022 38

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies,

omissions, and typographical errors. The information contained herein is subject to change and may be rendered

inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard

version changes, new model and/or product releases, product differences between differing manufacturers, software

changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that

cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this

information. However, AMD reserves the right to revise this information and to make changes from time to time to the

content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO

THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS

THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE

LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES

ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

© 2022 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, EPYC, Radeon, Ryzen, and

combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are

for identification purposes only and may be trademarks of their respective companies.

DISCLAIMER & ATTRIBUTION

