Skip to content

schola.sb3.utils.RenderImagesWrapper

class schola.sb3.utils.RenderImagesWrapper(venv) : Bases: VecEnvWrapper

Renders image observations to an interactive matplotlib window. It assumes that the observations are square RGB images, and attempts to reshape any box observation to 3xLxL.

Parameters: : venv (VecEnv) – The vectorized environment being wrapped.

Methods

__init__(venv)
close()Clean up the environment’s resources.
convert_to_plt_format(obs)Convert to a format supported by matplotlib.
env_is_wrapped(wrapper_class[, indices])Check if environments are wrapped with a given wrapper.
env_method(method_name, *method_args[, indices])Call instance methods of vectorized environments.
get_attr(attr_name[, indices])Return attribute from vectorized environment.
get_images()Return RGB images from each environment when available
getattr_depth_check(name, already_found)See base class.
getattr_recursive(name)Recursively check wrappers to find attribute.
render([mode])Gym environment rendering
reset()Reset all the environments and return an array of observations, or a tuple of observation arrays.
seed([seed])Sets the random seeds for all environments, based on a given seed.
set_attr(attr_name, value[, indices])Set attribute inside vectorized environments.
step(action)Step the environments with the given action
step_async(actions)Tell all the environments to start taking a step with the given actions.
step_wait()Wait for the step taken with step_async().
update_images(obs)Updates the images in the plt window with the given observations.

Attributes

unwrapped

__init__(venv) : Parameters: : venv (VecEnv)

close() : Clean up the environment’s resources.

convert_to_plt_format(obs) : Convert to a format supported by matplotlib. (e.g. (W,H), (W,H,3), and (W,H,4)). No Chanels or Chanels last, from Chanels first.

Parameters: : obs (np.ndarray) – The observation to convert.

Returns: : The converted observation.

Return type: : np.ndarray

reset() : Reset all the environments and return an array of observations, or a tuple of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until step_async() is invoked again.

Returns: : observation

Return type: : ndarray | Dict[str, ndarray] | Tuple[ndarray, …]

step(action) : Step the environments with the given action

Parameters: : - actions – the action

  • action (ndarray)

Returns: : observation, reward, done, information

Return type: : Tuple[ndarray | Dict[str, ndarray] | Tuple[ndarray, …], ndarray, ndarray, List[Dict]]

step_async(actions) : Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of the step.

You should not call this if a step_async run is already pending.

Parameters: : actions (ndarray)

Return type: : None

step_wait() : Wait for the step taken with step_async().

Returns: : observation, reward, done, information

Return type: : Tuple[ndarray | Dict[str, ndarray] | Tuple[ndarray, …], ndarray, ndarray, List[Dict]]

update_images(obs) : Updates the images in the plt window with the given observations.

Parameters: : obs (Dict*[str,np.ndarray]*) – Maps the names of the observations to the observation data.

Returns: : The original observation.

Return type: : Dict[str,np.ndarray]