schola.sb3.utils.VecMergeDictActionWrapper
class schola.sb3.utils.VecMergeDictActionWrapper(venv)
: Bases: VecEnvWrapper
A vectorized wrapper for merging a dictionary of actions into 1 single action. All actions in the dictionary must be of compatible types.
Parameters: : venv (VecEnv) – The vectorized environment being wrapped.
Methods
__init__ (venv) | |
close () | Clean up the environment’s resources. |
env_is_wrapped (wrapper_class[, indices]) | Check if environments are wrapped with a given wrapper. |
env_method (method_name, *method_args[, indices]) | Call instance methods of vectorized environments. |
get_attr (attr_name[, indices]) | Return attribute from vectorized environment. |
get_images () | Return RGB images from each environment when available |
getattr_depth_check (name, already_found) | See base class. |
getattr_recursive (name) | Recursively check wrappers to find attribute. |
render ([mode]) | Gym environment rendering |
reset () | Reset all the environments and return an array of observations, or a tuple of observation arrays. |
seed ([seed]) | Sets the random seeds for all environments, based on a given seed. |
set_attr (attr_name, value[, indices]) | Set attribute inside vectorized environments. |
step (action) | Step the environments with the given action |
step_async (actions) | Tell all the environments to start taking a step with the given actions. |
step_wait () | Wait for the step taken with step_async(). |
Attributes
unwrapped |
__init__(venv) : Parameters: : venv (VecEnv)
reset() : Reset all the environments and return an array of observations, or a tuple of observation arrays.
If step_async is still doing work, that work will be cancelled and step_wait() should not be called until step_async() is invoked again.
Returns: : observation
Return type: : ndarray | Dict[str, ndarray] | Tuple[ndarray, …]
step(action) : Step the environments with the given action
Parameters: : - actions – the action
- action (ndarray)
Returns: : observation, reward, done, information
Return type: : Tuple[ndarray | Dict[str, ndarray] | Tuple[ndarray, …], ndarray, ndarray, List[Dict]]
step_async(actions) : Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of the step.
You should not call this if a step_async run is already pending.
Parameters: : actions (ndarray)
Return type: : None
step_wait() : Wait for the step taken with step_async().
Returns: : observation, reward, done, information
Return type: : Tuple[ndarray | Dict[str, ndarray] | Tuple[ndarray, …], ndarray, ndarray, List[Dict]]