Skip to content

schola.core.spaces.binary.MultiBinarySpace

Class Definition

class schola.core.spaces.binary.MultiBinarySpace(n)

Bases: MultiBinary, UnrealSpace

A Space representing a vector of binary values.

See also:

  • gymnasium.spaces.MultiBinary – The gym space object that this class is analogous to
  • proto_spaces.BinarySpace – The protobuf representation of this space

Parameters

n

Type: int
The number of binary values in the space.

Attributes

shape

Type: Tuple[int]
The shape of the space. Has stricter type than gym.Space - never None.

n

Type: int
The number of binary values in the space.

is_np_flattenable

Checks whether this space can be flattened to aspaces.Box.

np_random

Lazily seed the PRNG since this is expensive and only needed if sampling from this space.

proto_space

Alias ofBinarySpace

Methods

__init__

__init__(n)

Constructor of MultiBinary space.

Parameters:

  • n (int) – This will fix the shape of elements of the space. It can either be an integer (if the space is flat) or some sort of sequence (tuple, list or np.ndarray) if there are multiple axes
  • seed – Optionally, you can use this argument to seed the RNG that is used to sample from the space

contains

contains(x)

Return boolean specifying if x is a valid member of this space.

fill_proto

fill_proto(msg, values)

Convert a python representation of point in this space to a protobuf message. Mutates msg with the result.

Parameters:

  • msg (proto_points.FundamentalPoint) – The protobuf message to fill
  • value (Any) – The pythonic representation of the point

from_jsonable

from_jsonable(sample_n)

Convert a JSONable data type to a batch of samples from this space.

from_proto

@classmethod
from_proto(message)

Create a Space Object from a protobuf representation.

Parameters:

  • message (proto_space) – The protobuf message to convert

Returns: The Space subclass created from the protobuf message

Return type: UnrealSpace

is_empty_definition

@classmethod
is_empty_definition(message)

Returns True iff this space has magnitude 0.

Parameters:

  • message (proto_space) – The protobuf message to check for emptiness

Returns: True iff the space is empty.

Return type: bool

merge

@classmethod
merge(*spaces)

Merge multiple MultiBinarySpaces into a single space.

Parameters:

  • *spaces (List[MultiBinarySpace]) – The spaces to merge

Returns: The merged space.

Return type: MultiBinarySpace

Raises: TypeError – If any of the spaces are not MultiBinarySpaces.

Example:

>>> merged_space = MultiBinarySpace.merge(MultiBinarySpace(3), MultiBinarySpace(4))
>>> merged_space.n
7

process_data

process_data(msg)

Convert a protobuf message corresponding to a point in this space to a pythonic representation.

Parameters:

  • msg (proto_points.FundamentalPoint) – The protobuf message to convert

Returns: The pythonic representation of the point.

Return type: np.ndarray

sample

sample(mask=None)

Generates a single random sample from this space.

seed

seed(seed=None)

Seed the PRNG of this space and possibly the PRNGs of subspaces.

to_jsonable

to_jsonable(sample_n)

Convert a batch of samples from this space to a JSONable data type.

to_normalized

to_normalized()

Cannot normalize a binary space, so return self.