schola.sb3.utils.RenderImagesWrapper
Class Definition
class schola.sb3.utils.RenderImagesWrapper(venv)Bases: VecEnvWrapper
Renders image observations to an interactive matplotlib window. It assumes that the observations are square RGB images, and attempts to reshape any box observation to 3xLxL.
Parameters
venv
Type: VecEnv
The vectorized environment being wrapped.
Attributes
unwrapped
Methods
__init__
__init__(venv)Parameters:
- venv (
VecEnv)
close
close()Clean up the environment’s resources.
convert_to_plt_format
convert_to_plt_format(obs)Convert to a format supported by matplotlib. (e.g. (W,H), (W,H,3), and (W,H,4)). No Channels or Channels last, from Channels first.
Parameters:
- obs (
np.ndarray) – The observation to convert
Returns: The converted observation.
Return type: np.ndarray
env_is_wrapped
env_is_wrapped(wrapper_class, indices=None)Check if environments are wrapped with a given wrapper.
env_method
env_method(method_name, *method_args, indices=None, **method_kwargs)Call instance methods of vectorized environments.
get_attr
get_attr(attr_name, indices=None)Return attribute from vectorized environment.
get_images
get_images()Return RGB images from each environment when available.
getattr_depth_check
getattr_depth_check(name, already_found)See base class.
getattr_recursive
getattr_recursive(name)Recursively check wrappers to find attribute.
render
render(mode="human")Gym environment rendering.
reset
reset()Reset all the environments and return an array of observations, or a tuple of observation arrays.
If step_async is still doing work, that work will be cancelled and step_wait() should not be called until step_async() is invoked again.
Returns: observation
Return type: ndarray | Dict[str, ndarray] | Tuple[ndarray, ...]
seed
seed(seed=None)Sets the random seeds for all environments, based on a given seed.
set_attr
set_attr(attr_name, value, indices=None)Set attribute inside vectorized environments.
step
step(action)Step the environments with the given action.
Parameters:
- action (
ndarray) – The action
Returns: observation, reward, done, information
Return type: Tuple[ndarray | Dict[str, ndarray] | Tuple[ndarray, ...], ndarray, ndarray, List[Dict]]
step_async
step_async(actions)Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of the step.
You should not call this if a step_async run is already pending.
Parameters:
- actions (
ndarray)
Return type: None
step_wait
step_wait()Wait for the step taken with step_async().
Returns: observation, reward, done, information
Return type: Tuple[ndarray | Dict[str, ndarray] | Tuple[ndarray, ...], ndarray, ndarray, List[Dict]]
update_images
update_images(obs)Updates the images in the plt window with the given observations.
Parameters:
- obs (
Dict[str, np.ndarray]) – Maps the names of the observations to the observation data
Returns: The original observation.
Return type: Dict[str, np.ndarray]