schola.sb3.utils.VecMergeDictActionWrapper
Class Definition
class schola.sb3.utils.VecMergeDictActionWrapper(venv)
Bases: VecEnvWrapper
A vectorized wrapper for merging a dictionary of actions into 1 single action. All actions in the dictionary must be of compatible types.
Parameters
venv
Type: VecEnv
The vectorized environment being wrapped.
Attributes
unwrapped
Methods
__init__
__init__(venv)
Parameters:
- venv (
VecEnv
)
close
close()
Clean up the environment’s resources.
env_is_wrapped
env_is_wrapped(wrapper_class, indices=None)
Check if environments are wrapped with a given wrapper.
env_method
env_method(method_name, *method_args, indices=None, **method_kwargs)
Call instance methods of vectorized environments.
get_attr
get_attr(attr_name, indices=None)
Return attribute from vectorized environment.
get_images
get_images()
Return RGB images from each environment when available.
getattr_depth_check
getattr_depth_check(name, already_found)
See base class.
getattr_recursive
getattr_recursive(name)
Recursively check wrappers to find attribute.
render
render(mode="human")
Gym environment rendering.
reset
reset()
Reset all the environments and return an array of observations, or a tuple of observation arrays.
If step_async is still doing work, that work will be cancelled and step_wait() should not be called until step_async() is invoked again.
Returns: observation
Return type: ndarray | Dict[str, ndarray] | Tuple[ndarray, ...]
seed
seed(seed=None)
Sets the random seeds for all environments, based on a given seed.
set_attr
set_attr(attr_name, value, indices=None)
Set attribute inside vectorized environments.
step
step(action)
Step the environments with the given action.
Parameters:
- action (
ndarray
) – The action
Returns: observation, reward, done, information
Return type: Tuple[ndarray | Dict[str, ndarray] | Tuple[ndarray, ...], ndarray, ndarray, List[Dict]]
step_async
step_async(actions)
Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of the step.
You should not call this if a step_async run is already pending.
Parameters:
- actions (
ndarray
)
Return type: None
step_wait
step_wait()
Wait for the step taken with step_async().
Returns: observation, reward, done, information
Return type: Tuple[ndarray | Dict[str, ndarray] | Tuple[ndarray, ...], ndarray, ndarray, List[Dict]]