schola.ray.utils.WrappedRLLibModel
- class schola.ray.utils.WrappedRLLibModel(model)[source]
-
Bases:
TorchModelV2
,Module
Methods
__init__
(model)Initialize a TorchModelV2.
add_module
(name, module)Add a child module to the current module.
apply
(fn)Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Return an iterator over module buffers.
children
()Return an iterator over immediate children modules.
compile
(*args, **kwargs)Compile this Module’s forward using
torch.compile()
.context
()Returns a contextmanager for the current forward pass.
cpu
()Move all model parameters and buffers to the CPU.
cuda
([device])Move all model parameters and buffers to the GPU.
custom_loss
(policy_loss, loss_inputs)Override to customize the loss function used to optimize this model.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Set the module in evaluation mode.
extra_repr
()Set the extra representation of the module.
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(*args, **kwargs)Forward pass through the model.
get_buffer
(target)Return the buffer given by
target
if it exists, otherwise throw an error.get_extra_state
()Return any extra state to include in the module’s state_dict.
get_initial_state
()Get the initial recurrent state values for the model.
get_mask
(action_space)get_parameter
(target)Return the parameter given by
target
if it exists, otherwise throw an error.get_submodule
(target)Return the submodule given by
target
if it exists, otherwise throw an error.half
()Casts all floating point parameters and buffers to
half
datatype.import_from_h5
(**kwargs)ipu
([device])Move all model parameters and buffers to the IPU.
is_time_major
()If True, data for calling this ModelV2 must be in time-major format.
last_output
()Returns the last output returned from calling the model.
load_state_dict
(state_dict[, strict, assign])Copy parameters and buffers from
state_dict
into this module and its descendants.metrics
()Override to return custom metrics from your model.
modules
()Return an iterator over all modules in the network.
mtia
([device])Move all model parameters and buffers to the MTIA.
named_buffers
([prefix, recurse, …])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, …])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Return an iterator over module parameters.
register_backward_hook
(hook)Register a backward hook on the module.
register_buffer
(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook
(hook, *[, prepend, …])Register a forward hook on the module.
register_forward_pre_hook
(hook, *[, …])Register a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Register a post-hook to be run after module’s
load_state_dict()
is called.register_load_state_dict_pre_hook
(hook)Register a pre-hook to be run before module’s
load_state_dict()
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Add a parameter to the module.
register_state_dict_post_hook
(hook)Register a post-hook for the
state_dict()
method.register_state_dict_pre_hook
(hook)Register a pre-hook for the
state_dict()
method.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state
(state)Set extra state contained in the loaded state_dict.
set_submodule
(target, module)Set the submodule given by
target
if it exists, otherwise throw an error.share_memory
()See
torch.Tensor.share_memory_()
.state_dict
(*args[, destination, prefix, …])Return a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty
(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train
([mode])Set the module in training mode.
trainable_variables
([as_dict])Returns the list of trainable variables for this model.
type
(dst_type)Casts all parameters and buffers to
dst_type
.Returns the value function output for the most recent forward pass.
variables
([as_dict])Returns the list (or a dict) of variables for this model.
xpu
([device])Move all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Reset gradients of all model parameters.
Attributes
T_destination
call_super_init
dump_patches
training
- __init__(model)[source]
-
Initialize a TorchModelV2.
Here is an example implementation for a subclass
MyModelClass(TorchModelV2, nn.Module)
:
- forward(*args, **kwargs)[source]
-
Forward pass through the model. Removes variance outputs, to make compatible with Unreal.
- value_function()[source]
-
Returns the value function output for the most recent forward pass.
Note that a forward call has to be performed first, before this methods can return anything and thus that calling this method does not cause an extra forward pass through the network.
- Returns:
-
Value estimate tensor of shape [BATCH].