schola.scripts.sb3.launch.SACSettings

class schola.scripts.sb3.launch.SACSettings(learning_rate: float = 0.0003, buffer_size: int = 1000000, learning_starts: int = 100, batch_size: int = 256, tau: float = 0.005, gamma: float = 0.99, train_freq: int = 1, gradient_steps: int = 1, action_noise: <built-in function any> = None, replay_buffer_class: <built-in function any> = None, replay_buffer_kwargs: dict = None, optimize_memory_usage: bool = False, ent_coef: <built-in function any> = ‘auto’, target_update_interval: int = 1, target_entropy: <built-in function any> = ‘auto’, use_sde: bool = False, sde_sample_freq: int = -1)[source]

Bases: object

Methods

__init__([learning_rate, buffer_size, …])

Attributes

action_noise

batch_size

buffer_size

constructor

critic_type

ent_coef

gamma

gradient_steps

learning_rate

learning_starts

name

optimize_memory_usage

replay_buffer_class

replay_buffer_kwargs

sde_sample_freq

target_entropy

target_update_interval

tau

train_freq

use_sde

Parameters:
  • learning_rate (float)

  • buffer_size (int)

  • learning_starts (int)

  • batch_size (int)

  • tau (float)

  • gamma (float)

  • train_freq (int)

  • gradient_steps (int)

  • action_noise (any)

  • replay_buffer_class (any)

  • replay_buffer_kwargs (dict)

  • optimize_memory_usage (bool)

  • ent_coef (any)

  • target_update_interval (int)

  • target_entropy (any)

  • use_sde (bool)

  • sde_sample_freq (int)

__init__(learning_rate=0.0003, buffer_size=1000000, learning_starts=100, batch_size=256, tau=0.005, gamma=0.99, train_freq=1, gradient_steps=1, action_noise=None, replay_buffer_class=None, replay_buffer_kwargs=None, optimize_memory_usage=False, ent_coef=‘auto’, target_update_interval=1, target_entropy=‘auto’, use_sde=False, sde_sample_freq=-1)
Parameters:
  • learning_rate (float)

  • buffer_size (int)

  • learning_starts (int)

  • batch_size (int)

  • tau (float)

  • gamma (float)

  • train_freq (int)

  • gradient_steps (int)

  • action_noise (any | None)

  • replay_buffer_class (any | None)

  • replay_buffer_kwargs (dict | None)

  • optimize_memory_usage (bool)

  • ent_coef (any)

  • target_update_interval (int)

  • target_entropy (any)

  • use_sde (bool)

  • sde_sample_freq (int)

Return type:

None

action_noise: any = None
batch_size: int = 256
buffer_size: int = 1000000
property constructor: Type[SAC]
property critic_type: str
ent_coef: any = ‘auto’
gamma: float = 0.99
gradient_steps: int = 1
learning_rate: float = 0.0003
learning_starts: int = 100
property name: str
optimize_memory_usage: bool = False
replay_buffer_class: any = None
replay_buffer_kwargs: dict = None
sde_sample_freq: int = -1
target_entropy: any = ‘auto’
target_update_interval: int = 1
tau: float = 0.005
train_freq: int = 1
use_sde: bool = False

Related pages

  • Visit the Schola product page for download links and more information.

Looking for more documentation on GPUOpen?

AMD GPUOpen software blogs

Our handy software release blogs will help you make good use of our tools, SDKs, and effects, as well as sharing the latest features with new releases.

GPUOpen Manuals

Don’t miss our manual documentation! And if slide decks are what you’re after, you’ll find 100+ of our finest presentations here.

AMD GPUOpen Performance Guides

The home of great performance and optimization advice for AMD RDNA™ 2 GPUs, AMD Ryzen™ CPUs, and so much more.

Getting started: AMD GPUOpen software

New or fairly new to AMD’s tools, libraries, and effects? This is the best place to get started on GPUOpen!

AMD GPUOpen Getting Started Development and Performance

Looking for tips on getting started with developing and/or optimizing your game, whether on AMD hardware or generally? We’ve got you covered!

AMD GPUOpen Technical blogs

Browse our technical blogs, and find valuable advice on developing with AMD hardware, ray tracing, Vulkan®, DirectX®, Unreal Engine, and lots more.

Find out more about our software!

AMD GPUOpen Effects - AMD FidelityFX technologies

Create wonder. No black boxes. Meet the AMD FidelityFX SDK!

AMD GPUOpen Samples

Browse all our useful samples. Perfect for when you’re needing to get started, want to integrate one of our libraries, and much more.

AMD GPUOpen developer SDKs

Discover what our SDK technologies can offer you. Query hardware or software, manage memory, create rendering applications or machine learning, and much more!

AMD GPUOpen Developer Tools

Analyze, Optimize, Profile, Benchmark. We provide you with the developer tools you need to make sure your game is the best it can be!