AMD Schola

AMD Schola is a library for developing reinforcement learning (RL) agents in Unreal® Engine, and training with your favorite python-based RL frameworks: Gym, RLlib and Stable Baselines 3.

Download the latest version - v2.0.0

What’s new in AMD Schola v2

Flexible inference architecture with agent/policy/stepper system

AMD Schola v2 introduces a powerful and flexible architecture that decouples the inference process into components for maximum flexibility and reusability. This modular design allows you to mix and match different policies, stepping strategies, and agent implementations to suit your specific needs.

Key Components:

  • Agent Interface - Define an agent that takes actions and makes observations.

    • UInferenceComponent - Add inference to any actor.
    • AInferencePawn - Standalone pawn-based agents.
    • AInferenceController - AI controller pattern for complex behaviors.
  • Policy Interface - Plug in different inference backends, to turn observations into actions.

    • UNNEPolicy - Native ONNX inference with Unreal Engine’s Neural Network Engine.
    • UBlueprintPolicy - Custom Blueprint-based decision making.
    • Extensible interface for custom policy implementations, and new inference providers.
  • Stepper Objects - Control inference execution patterns by coordinating agents and policies.

    • SimpleStepper - Synchronous, straightforward inference.
    • PipelinedStepper - Overlap inference with simulation for better throughput.
    • Build custom steppers for specialized performance requirements.

This architecture means you can easily switch between inference backends, optimize performance characteristics, and compose behaviors without rewriting your agent logic. Whether you’re prototyping with Blueprints or deploying production-ready neural networks, the same agent interface works seamlessly with your chosen policy and execution strategy.

Minari dataset support

AMD Schola v2 introduces native support for the Minari dataset format, the standard for offline RL and imitation learning datasets. Minari provides a unified interface for storing and loading trajectory data, making it easier to share demonstrations and datasets across different projects and research communities.

Dynamic agent management

One of the most powerful improvements in AMD Schola v2 is robust support for agents being spawned and deleted mid-episode. Previous versions required a static set of agents throughout an episode, or a predefined spawning function to spawn agents but v2 can now handle dynamic populations seamlessly.

This enables realistic scenarios like:

  • Battle Royale / Survival Games - Agents can be eliminated and removed from training without breaking the episode.
  • Population Simulations - Spawn new agents based on game events or environmental triggers.
  • Dynamic Team Composition - Add or remove team members on the fly.
  • Procedural Scenarios - Dynamically create agents as players progress through procedurally generated content.

The system lets you manage lifecycles the way you want, simply mark the agents as terminated when they die, or start reporting observations when they spawn. This makes it much easier to build realistic, dynamic environments that mirror actual game scenarios.

Enhanced command-line interface

Training from the command line is now more intuitive than ever:

Terminal window
# Stable Baselines 3
schola sb3 train ppo ...
# Ray RLlib
schola rllib train ppo ...
# Utilities
schola compile-proto
schola build-docs

The new CLI built with cyclopts provides better error messages, auto-completion support, and a more consistent interface across different RL frameworks.

Unreal Blueprints improvements

Working in Unreal Engine Blueprints is smoother than ever:

  • Instanced Struct Based Objects Full Blueprint Support for all points and spaces.
  • Enhanced Blueprint Utilities for spaces and points.

Updated framework support

AMD Schola v2 has been updated to support the latest versions of all major RL frameworks and libraries:

  • Gymnasium - Full support for the latest Gymnasium API (1.1+).
  • Ray RLlib New API Stack - Compatible with the latest Ray RLlib features and algorithms.
  • Stable-Baselines3 2.x - Updated to work with the newest SB3 release.

These updates ensure you can leverage the latest features, bug fixes, and performance improvements from the RL ecosystem while training your agents in Unreal Engine.

Prerequisites

Features

Inference in C++

Schola provides tools for connecting and controlling agents with ONNX models inside Unreal Engine, allowing for inference with or without Python.

Simple Unreal interfaces

Schola exposes simple interfaces in Unreal Engine for the user to implement, allowing you to quickly build and develop reinforcement learning environments.

Modular components

Environments in Schola are modular so you can quickly design new agents from existing components, such as sensors and actuators.

Multi-agent training

Train multiple agents to compete against each other at the same time using RLlib and multi-agent environments built with Schola.

Vectorized training

Run multiple copies of your environment within the same Unreal Engine process to accelerate training.

Headless training

Run training without rendering to significantly improve training throughput.

AMD Schola v1.3 sample environments

Basic

The Basic environment features an agent that can move in the X-dimension and receives a small reward for going five steps in one direction and a bigger reward for going in the opposite direction.

MazeSolver: Using raycasts

The MazeSolver environment features a static maze that the agent learns to solve as fast as possible. The agent observers the environment using raycasts, moves by teleporting in 2 dimensions and is given a reward for getting closer to the goal.

3DBall: Physics based environments

The 3DBall environment features an agent that is trying to balance a ball on-top of itself. The agent can rotate itself and receives a reward every step until the ball falls.

BallShooter: Building your own actuator

The BallShooter environment features a rotating turret that learns to aim and shoot at randomly moving targets. The agent can rotate in either direction, and detects the targets by using a cone shaped ray-cast.

Pong: Collaborative training

The Pong environment features two agents playing a collaborative game of pong. The agents receive a reward every step as long as the ball has not hit the wall behind either agent. The game ends when the ball hits the wall behind either agent.

Tag: Competitive multi-agent training

The Tag environment features a 3v1 game of tag, where one agent(the runner) has to run away from the other agents which are trying to collide with it. The agents move using forward, left and right movement input, and observe the environment with a combination of ray-casts and global position data.

RaceTrack: Controlling chaos vehicles with Schola

The RaceTrack environment features a car implemented with Chaos Vehicles, that learns to follow a race track. The agent controls the throttle, break and steering of the car, and can see it’s velocity and position relative to the center of the track.

Additional resources

Endnotes

Unreal® is a trademark or registered trademark of Epic Games, Inc. in the United States of America and elsewhere.

“Python” is a trademark or registered trademark of the Python Software Foundation.

Version history

What's new in AMD Schola v2.0.0?

Flexible inference architecture with agent/policy/stepper system

AMD Schola v2 introduces a powerful and flexible architecture that decouples the inference process into components for maximum flexibility and reusability. This modular design allows you to mix and match different policies, stepping strategies, and agent implementations to suit your specific needs.

Key components:

Agent Interface - Define what can be controlled by an inference policy.

  • UInferenceComponent - Add inference to any actor.
  • AInferencePawn - Standalone pawn-based agents.
  • AInferenceController - AI controller pattern for complex behaviors.

Policy Interface - Plug in different inference backends.

  • UNNEPolicy - Native ONNX inference with Unreal Engine's Neural Network Engine.
  • UBlueprintPolicy - Custom Blueprint-based decision making.
  • Extensible interface for custom policy implementations.

Stepper Objects - Control inference execution patterns.

  • SimpleStepper - Synchronous, straightforward inference.

  • PipelinedStepper - Overlap inference with simulation for better throughput.

  • Build custom steppers for specialized performance requirements.

    This architecture means you can easily switch between inference backends, optimize performance characteristics, and compose behaviors without rewriting your agent logic. Whether you're prototyping with Blueprints or deploying production-ready neural networks, the same agent interface works seamlessly with your chosen policy and execution strategy.

Minari dataset support

AMD Schola v2 introduces native support for the Minari dataset format, the standard for offline RL and imitation learning datasets. Minari provides a unified interface for storing and loading trajectory data, making it easier to share demonstrations and datasets across different projects and research communities.

Dynamic agent management

One of the most powerful improvements in AMD Schola v2 is robust support for agents being spawned and deleted mid-episode. Previous versions required a static set of agents throughout an episode, or a predefined spawning function to spawn agents but v2 can now handle dynamic populations seamlessly.

This enables realistic scenarios like:

  • Battle Royale / Survival Games - Agents can be eliminated and removed from training without breaking the episode.

  • Population Simulations - Spawn new agents based on game events or environmental triggers.

  • Dynamic Team Composition - Add or remove team members on the fly.

  • Procedural Scenarios - Dynamically create agents as players progress through procedurally generated content.

    The system lets you manage lifecycles the way you want, simply mark the agents as terminated when they die, or start reporting observations when they spawn. This makes it much easier to build realistic, dynamic environments that mirror actual game scenarios.

Enhanced command-line interface

Training from the command line is now more intuitive than ever:

 # Stable Baselines 3
 schola sb3 train ppo ...
 schola sb3 export ...

 # Ray RLlib
 schola rllib train ppo ...
 schola rllib export ...

 # Utilities
 schola compile-proto
 schola build-docs

The new CLI built with cyclopts provides better error messages, auto-completion support, and a more consistent interface across different RL frameworks.

Unreal Blueprint improvements

Working in Unreal Engine Blueprints is smoother than ever:

  • Instanced Struct Based Objects Full Blueprint Support for all points and spaces.
  • Enhanced Blueprint Utilities for spaces and points.

Updated framework support

AMD Schola v2 has been updated to support the latest versions of all major RL frameworks and libraries:

  • Gymnasium - Full support for the latest Gymnasium API (1.1+).

  • Ray RLlib New API Stack - Compatible with the latest Ray RLlib features and algorithms.

  • Stable-Baselines3 2.x - Updated to work with the newest SB3 release.

    These updates ensure you can leverage the latest features, bug fixes, and performance improvements from the RL ecosystem while training your agents in Unreal Engine.

Prerequisites

  • Unreal® Engine 5.5+ (tested with 5.5 - 5.6).
  • Python® 3.10 - 3.12.
  • Visual Studio® 2022 with MSVC v143 build tools (Microsoft Windows®).

Related news and technical articles