Source code for schola.core.spaces.dict

Copied!


# Copyright (c) 2024 Advanced Micro Devices, Inc. All Rights Reserved.
"""
Implementation of a DictionarySpace, a space representing a string keyed dictionary of other spaces.
"""
from collections import OrderedDict
from functools import cached_property
from typing import Dict, List, Union
import gymnasium
import schola.generated.Spaces_pb2 as proto_spaces
import schola.generated.Points_pb2 as proto_points
from .base import UnrealSpace
import numpy as np
import logging
from .discrete import DiscreteSpace, MultiDiscreteSpace
from .binary import MultiBinarySpace
from .box import BoxSpace
from .base import get_space_shape_as_int, merge_space_shape

[docs] class DictSpace(gymnasium.spaces.Dict): """ A Space representing a dictionary of spaces. Parameters ---------- space_dict : Dict[str, gymnasium.spaces.Space] The dictionary of spaces to be represented. Attributes ---------- spaces : Dict[str, gymnasium.spaces.Space] The dictionary of spaces represented by this object. See Also -------- gymnasium.spaces.Dict : The gym space object that this class is analogous to. proto_spaces.DictSpace : The protobuf representation of this space. """
[docs] def __init__(self, space_dict=None): super().__init__(space_dict) self._shape = merge_space_shape(self.spaces.values())
[docs] def fill_proto(self, msg: proto_points.DictPoint, action): for name, space in self.spaces.items(): space.fill_proto(msg.values.add(), action[name])
@cached_property def shapes(self): """ Get the shapes of the subspaces in the dictionary space. Returns ------- Dict[str, Tuple[int]] A dictionary of the shapes of the subspaces in the dictionary space Examples -------- >>> space = DictSpace({"a": BoxSpace(0, 1, shape=(2,)), "b": DiscreteSpace(3)}) >>> space.shapes {'a': 2, 'b': 1} """ ret_val = dict() for name, space in self.spaces.items(): ret_val[name] = get_space_shape_as_int(space) return ret_val
[docs] @classmethod def from_proto(cls, message): subspace_dict = OrderedDict() for name,value in zip(message.labels,message.values): #TODO clean this up if value.HasField(BoxSpace._name): new_entry = BoxSpace.from_proto(value.box_space) elif value.HasField(DiscreteSpace._name): new_entry = MultiDiscreteSpace.from_proto(value.discrete_space) elif value.HasField(MultiBinarySpace._name): new_entry = MultiBinarySpace.from_proto(value.binary_space) subspace_dict[name] = new_entry return DictSpace(subspace_dict)
[docs] def to_normalized(self): """ Normalize this dictionary space by normalizing all of the subspaces in this dictionary space. Returns ------- DictSpace The normalized dictionary space. A modified version of the space this method is called on Examples -------- >>> space = DictSpace({"a": BoxSpace([0,0],[2,2]), "b": DiscreteSpace(3)}) >>> space.to_normalized() Dict('a': Box(0.0, 2.0, (2,), float32), 'b': Discrete(3)) """ for key, value in self.spaces.items(): value.to_normalized() return self
[docs] def process_data(self, msg : proto_points.DictPoint): return {name: space.process_data(point_msg) for name, space, point_msg in zip(*zip(*self.spaces.items()), msg.values)}
@property def has_only_one_fundamental_type(self): """ Check if all the subspaces in the dictionary space are of the same fundamental type. Returns ------- bool True if all the subspaces are of the same fundamental type, False otherwise Examples -------- >>> space = DictSpace({"a": BoxSpace([0,0],[2,2]), "b": DiscreteSpace(3)}) >>> space.has_only_one_fundamental_type False >>> space = DictSpace({"a": BoxSpace([0,0],[2,2]), "b": BoxSpace([0,0],[2,2])}) >>> space.has_only_one_fundamental_type True >>> space = DictSpace({"a": DiscreteSpace(3), "b": MultiDiscreteSpace([3,3])}) >>> space.has_only_one_fundamental_type True """ fundamental_type = None for key,value in self.spaces.items(): if fundamental_type is None: fundamental_type = type(value) elif fundamental_type in [DiscreteSpace,MultiDiscreteSpace]: if not isinstance(value,(DiscreteSpace,MultiDiscreteSpace)): return False else: if not isinstance(value,fundamental_type): return False return True
[docs] def simplify(self) -> UnrealSpace: """ Simplify the dictionary space by merging subspaces of the same fundamental type, if possible. Returns ------- gymnasium.spaces.Space The simplified space Examples -------- >>> space = DictSpace({"a": BoxSpace([0,0],[2,2]), "b": BoxSpace([0,0],[2,2])}) >>> space.simplify() Box(0.0, 2.0, (4,), float32) >>> space = DictSpace({"a": DiscreteSpace(4), "b": BoxSpace([0,0],[2,2])}) >>> space.simplify() Dict('a': Discrete(4), 'b': Box(0.0, 2.0, (2,), float32)) >>> space = DictSpace({"a": DiscreteSpace(4)}) >>> space.simplify() Discrete(4) """ #Only one space so simplify to it if(len(self.spaces) == 1): return next(iter(self.spaces.values())) #We can merge matching spaces elif(self.has_only_one_fundamental_type): spaces = list(self.spaces.values()) return type(spaces[0]).merge(*spaces) else: return self

Related pages

  • Visit the Schola product page for download links and more information.

Looking for more documentation on GPUOpen?

AMD GPUOpen software blogs

Our handy software release blogs will help you make good use of our tools, SDKs, and effects, as well as sharing the latest features with new releases.

GPUOpen Manuals

Don’t miss our manual documentation! And if slide decks are what you’re after, you’ll find 100+ of our finest presentations here.

AMD GPUOpen Performance Guides

The home of great performance and optimization advice for AMD RDNA™ 2 GPUs, AMD Ryzen™ CPUs, and so much more.

Getting started: AMD GPUOpen software

New or fairly new to AMD’s tools, libraries, and effects? This is the best place to get started on GPUOpen!

AMD GPUOpen Getting Started Development and Performance

Looking for tips on getting started with developing and/or optimizing your game, whether on AMD hardware or generally? We’ve got you covered!

AMD GPUOpen Technical blogs

Browse our technical blogs, and find valuable advice on developing with AMD hardware, ray tracing, Vulkan®, DirectX®, Unreal Engine, and lots more.

Find out more about our software!

AMD GPUOpen Effects - AMD FidelityFX technologies

Create wonder. No black boxes. Meet the AMD FidelityFX SDK!

AMD GPUOpen Samples

Browse all our useful samples. Perfect for when you’re needing to get started, want to integrate one of our libraries, and much more.

AMD GPUOpen developer SDKs

Discover what our SDK technologies can offer you. Query hardware or software, manage memory, create rendering applications or machine learning, and much more!

AMD GPUOpen Developer Tools

Analyze, Optimize, Profile, Benchmark. We provide you with the developer tools you need to make sure your game is the best it can be!